Browsing by Subject "Protein degradation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Angiogenic peptide nanofibers improve wound healing in STZ-induced diabetic rats(American Chemical Society, 2016-06) Senturk, B.; Mercan, S.; Delibasi, T.; Güler, Mustafa O.; Tekinay, A. B.Low expressions of angiogenic growth factors delay the healing of diabetic wounds by interfering with the process of blood vessel formation. Heparin mimetic peptide nanofibers can bind to and enhance production and activity of major angiogenic growth factors, including VEGF. In this study, we showed that heparin mimetic peptide nanofibers can serve as angiogenic scaffolds that allow slow release of growth factors and protect them from degradation, providing a new therapeutic way to accelerate healing of diabetic wounds. We treated wounds in STZ-induced diabetic rats with heparin mimetic peptide nanofibers and studied repair of full-thickness diabetic skin wounds. Wound recovery was quantified by analyses of re-epithelialization, granulation tissue formation and blood vessel density, as well as VEGF and inflammatory response measurements. Wound closure and granulation tissue formation were found to be significantly accelerated in heparin mimetic gel treated groups. In addition, blood vessel counts and the expressions of alpha smooth muscle actin and VEGF were significantly higher in bioactive gel treated animals. These results strongly suggest that angiogenic heparin mimetic nanofiber therapy can be used to support the impaired healing process in diabetic wounds.Item Open Access Identification of differentially expressed microRNAs during lipotoxic endoplasmic reticulum stress in RAW264.7 macrophages(Turkish Biochemistry Society, 2016-06) Nadir, M.; Tufanlı, Ö.; Erbay, E.; Atalay, A.Objective: Increased fatty acids in the circulation and their accumulation in non-adipose tissues play a significant role in the development of obesity related metabolic and inflammatory disorders such as insulin resistance, diabetes and atherosclerosis. While fat tissue has the ability to store excess fatty acids, uptake of excess fatty acids to other tissues burdens intracellular metabolic organelles such as mitochondria and endoplasmic reticulum (ER), leading to stress response and lipotoxic cell death. Unfolded protein response (UPR) is a key adaptation of the ER to stress. It is still not completely clear how lipids engage the UPR and how UPR manages both the adaptive and destructive consequences under its control. Increasing evidence point to the importance of miRNA regulation of the UPR as well as UPR’s role in miRNA biogenesis. In order to understand how lipids engage the UPR, we set forth to identify microRNAs regulated by lipotoxic ER stress in macrophages. Methods: We stressed the mouse macrophage cell line (RAW 264.7) with a saturated fatty acid, 500μM palmitate, reflecting the levels found in the circulation of obese patients. We analyzed the microRNAome profiles of this cell line using QRT-PCR based miScript miRNA PCR array which contained all known mouse microRNAs in miRBase release16 and performed pathway analysis for potential targets. Results: 227 microRNAs showed altered expression levels; 43 microRNAs above 2 fold difference and 13 microRNAs 3-24 fold difference. Pathway analysis enriched the target mRNAs of these lipotoxic ER stress associated miRNAs. Conclusion: When exposed to high concentrations of saturated fatty acids that can induce ER stress, macrophages display a dynamic range of changes in their microRNAome profiles. Our findings reflect the consequences of lipotoxic stress on circulating monocytes and tissue-associated macrophages in obesity. Further studies are needed to deliniate which UPR arm is reponsible for the microRNA changes reported here.