Browsing by Subject "Polybenzoxazines"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Polybenzoxazine-based nanofibers by electrospinning(Elsevier Inc., 2017) Ertaş, Yelda; Uyar, Tamer; Ishida, H.; Froimowicz, P.In this chapter recent progress in the production of polybenzoxazine-based nanofibrous mats by electrospinning is highlighted. The benzoxazine monomers could easily form thermosetting polybenzoxazines by in situ thermally initiated ring-opening polymerization, hence, they are promising materials for both the surface modification of polymeric nanofibrous mats and the production of polybenzoxazine-based composite nanofibers. After curing, polybenzoxazines provide hydrophobic characteristic for the modified polymeric nanofiber surfaces by in situ polymerization of the benzoxazines because of their highly cross-linked structure. Also, they allow for the further functionalization of the surfaces as superhydrophobic and superleophilic by the incorporation of SiO2 nanoparticles into the benzoxazine solution. In addtion, benzoxazine monomers could be directly added into electrospinning solutions and the thermal curing of the obtained nanofibrous mat could yield hydrophobic composite nanofibers. Moreover, because of outstanding properties, such as near-zero volumetric change upon curing, low water absorption, high glass transition temperature, high char yield, and no by-products without any catalysts during curing, polybenzoxazines are good a candidate as a precursor for the production of carbon nanofibers. In addition, the molecular structure of polybenzoxazines facilitates immense design flexibility, which enables the tailoring of the properties of the cured material. Therefore, suitable polybenzoxazines can be synthesized, and cross-linked polybenzoxazine nanofibers, with enhanced thermal and mechanical properties, can be obtained by electrospinning without the blending of other polymers. By combining the unique properties of nanofibers and the facinating properties of polybenzoxazines, highly cross-linked polybenzoxazine-based nanofibrous mats can be obtained and these materials are quite useful, especially in filtration applications. © 2017 Elsevier Inc. All rights reserved.Item Open Access Synthesis and characterization of bio-based benzoxazines derived from thymol(John Wiley and Sons, 2019) Ertaş-Doğan, Yelda; Satılmış, Bekir; Uyar, TamerIn the present study, bio-based benzoxazine resins were synthesized from bio-based phenolic compound; thymol, and three different amines; ethylamine, aniline and 1,6-diaminohexane, and paraformaldehyde by solvent-free condensation reaction. The chemical structures of bio-based benzoxazines; T-ea (thymol, ethylamine), T-a (thymol, aniline), and T-dh (thymol, 1,6-diaminohexane) were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared (FTIR) spectroscopy, elemental analysis, and high-resolution mass spectrometry. The curing studies of T-ea, T-a, and T-dh bio-based benzoxazines were performed by stepwise thermal treatment at 150, 175, 200, 225, and 250 °C. The polymerization (ring-opening and crosslinking reactions) of T-ea, T-a, and T-dh bio-based benzoxazines was investigated by FTIR spectroscopy. Cure analysis was conducted using differential scanning calorimetry and the changes in thermal properties of the T-ea, T-a, and T-dh bio-based benzoxazine resins and their corresponding thermally crosslinked polybenzoxazines PT-ea, PT-a, and PT-dh were studied by thermogravimetric analyzer. The results indicated that all the thymol-based polybenzoxazines have shown enhanced thermal stability.