Polybenzoxazine-based nanofibers by electrospinning

Date

2017

Authors

Ertaş, Yelda
Uyar, Tamer

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Elsevier Inc.

Volume

Issue

Pages

643 - 671

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
14
downloads

Series

Abstract

In this chapter recent progress in the production of polybenzoxazine-based nanofibrous mats by electrospinning is highlighted. The benzoxazine monomers could easily form thermosetting polybenzoxazines by in situ thermally initiated ring-opening polymerization, hence, they are promising materials for both the surface modification of polymeric nanofibrous mats and the production of polybenzoxazine-based composite nanofibers. After curing, polybenzoxazines provide hydrophobic characteristic for the modified polymeric nanofiber surfaces by in situ polymerization of the benzoxazines because of their highly cross-linked structure. Also, they allow for the further functionalization of the surfaces as superhydrophobic and superleophilic by the incorporation of SiO2 nanoparticles into the benzoxazine solution. In addtion, benzoxazine monomers could be directly added into electrospinning solutions and the thermal curing of the obtained nanofibrous mat could yield hydrophobic composite nanofibers. Moreover, because of outstanding properties, such as near-zero volumetric change upon curing, low water absorption, high glass transition temperature, high char yield, and no by-products without any catalysts during curing, polybenzoxazines are good a candidate as a precursor for the production of carbon nanofibers. In addition, the molecular structure of polybenzoxazines facilitates immense design flexibility, which enables the tailoring of the properties of the cured material. Therefore, suitable polybenzoxazines can be synthesized, and cross-linked polybenzoxazine nanofibers, with enhanced thermal and mechanical properties, can be obtained by electrospinning without the blending of other polymers. By combining the unique properties of nanofibers and the facinating properties of polybenzoxazines, highly cross-linked polybenzoxazine-based nanofibrous mats can be obtained and these materials are quite useful, especially in filtration applications. © 2017 Elsevier Inc. All rights reserved.

Course

Other identifiers

Book Title

Advanced and emerging polybenzoxazine science and technology

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)