Synthesis and characterization of bio-based benzoxazines derived from thymol

Available
The embargo period has ended, and this item is now available.

Date

2019

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
6
downloads

Citation Stats

Series

Abstract

In the present study, bio-based benzoxazine resins were synthesized from bio-based phenolic compound; thymol, and three different amines; ethylamine, aniline and 1,6-diaminohexane, and paraformaldehyde by solvent-free condensation reaction. The chemical structures of bio-based benzoxazines; T-ea (thymol, ethylamine), T-a (thymol, aniline), and T-dh (thymol, 1,6-diaminohexane) were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared (FTIR) spectroscopy, elemental analysis, and high-resolution mass spectrometry. The curing studies of T-ea, T-a, and T-dh bio-based benzoxazines were performed by stepwise thermal treatment at 150, 175, 200, 225, and 250 °C. The polymerization (ring-opening and crosslinking reactions) of T-ea, T-a, and T-dh bio-based benzoxazines was investigated by FTIR spectroscopy. Cure analysis was conducted using differential scanning calorimetry and the changes in thermal properties of the T-ea, T-a, and T-dh bio-based benzoxazine resins and their corresponding thermally crosslinked polybenzoxazines PT-ea, PT-a, and PT-dh were studied by thermogravimetric analyzer. The results indicated that all the thymol-based polybenzoxazines have shown enhanced thermal stability.

Source Title

Journal of Applied Polymer Science

Publisher

John Wiley and Sons

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English