Browsing by Subject "Mus"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Biocompatibility studies on lanthanum oxide nanoparticles(Royal Society of Chemistry, 2015) Brabu, B.; Haribabu, S.; Revathy, M.; Anitha, S.; Thangapandiyan, M.; Navaneethakrishnan, K. R.; Gopalakrishnan, C.; Murugan, S. S.; Kumaravel, T. S.Lanthanum oxide nanoparticles (LONP), a rare earth metal oxide, have unique properties that make them a suitable candidate for several biomedical applications. We investigated certain key in vitro and in vivo biocompatibility endpoints on LONP. LONP were cytotoxic in in vitro assays and predominantly exerted their action via release of reactive oxygen species. These nanoparticles were neither irritants nor sensitizers in a rabbit model. LONP extracts did not exert any acute systemic toxicity effects in mice. On the other hand LONP exerted toxicity to the liver following oral administration, suggesting that these particles are absorbed from the gastrointestinal (GI) tract and deposited in the hepatobiliary system. LONP did not induce any mutation in the Ames test both in the presence or absence of S-9. These observations provide a base line biocompatibility and toxicity data on LONP. The current findings will also be useful in defining standards for nanoparticle containing devices. © The Royal Society of Chemistry.Item Open Access Cd81 Interacts with the T Cell Receptor to Suppress Signaling(2012) Cevik, S.I.; Keskin, N.; Belkaya, S.; Ozlu, M.I.; Deniz, E.; Tazebay, U.H.; Erman, B.CD81 (TAPA-1) is a ubiquitously expressed tetraspanin protein identified as a component of the B lymphocyte receptor (BCR) and as a receptor for the Hepatitis C Virus. In an effort to identify trans-membrane proteins that interact with the T-cell antigen receptor (TCR), we performed a membrane yeast two hybrid screen and identified CD81 as an interactor of the CD3delta subunit of the TCR. We found that in the absence of CD81, in thymocytes from knockout mice, TCR engagement resulted in stronger signals. These results were recapitulated in T cell lines that express low levels of CD81 through shRNA mediated silencing. Increased signaling did not result from alterations in the levels of TCR on the surface of T lymphocytes. Although CD81 is not essential for normal T lymphocyte development, it plays an important role in regulating TCR and possibly pre-TCR signal transduction by controlling the strength of signaling. CD81 dependent alterations in thymocyte signaling are evident in increased CD5 expression on CD81 deficient double positive (DP) thymocytes. We conclude that CD81 interacts with the T cell receptor to suppress signaling. © 2012 Cevik et al.Item Open Access The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity(Nature Publishing Group, 2015) Sag, D.; Cekic, C.; Wu, R.; Linden J.; Hedrick, C.C.ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here we demonstrate a role of ABCG1 as a mediator of tumour immunity. Abcg1-/- mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumour growth in Abcg1-/- mice is myeloid cell intrinsic and is associated with a phenotypic shift of the macrophages from a tumour-promoting M2 to a tumour-fighting M1 within the tumour. Abcg1-/- macrophages exhibit an intrinsic bias towards M1 polarization with increased NF-κB activation and direct cytotoxicity for tumour cells in vitro. Overall, our study demonstrates that the absence of ABCG1 inhibits tumour growth through modulation of macrophage function within the tumour, and illustrates a link between cholesterol homeostasis and cancer. © 2015 Macmillan Publishers Limited. All rights reserved.Item Open Access Generation of mouse hybridomas secreting anti-salmonella enteritidis antibodies and their preliminary characterization(2011) Büyüktanır, O.; Yaǧcı, Tamer; Findık, A.; Yıldırım, T.; Yurdusev, N.BALB/c mice were intraperitoneally immunized with inactivated bacteria for generation of monoclonal anti-S. Enteritidis antibody. The spleen cells of the highest responder animal at fifth immunization were used as the fusion partner of the mouse Sp2/0 myeloma cells. A total of 6 stable hybridomas secreting IgM and IgG isotype antibodies were obtained. These hybridomas were found to be reactive with three S. Enteritidis antigens having relative molecular weights of 73, 59 and 42kDa in Western blot analysis. The 59kDa molecule corresponds to the flagellin protein. From this preliminary study, it can be concluded that further investigations are necessary to obtain monoclonal hybrid cells secreting monoepitopic and monoisotypic antibody by subcloning of the parental hybridomas.Item Open Access Patrolling monocytes control tumor metastasis to the lung(American Association for the Advancement of Science, 2015) Hanna, R. N.; Cekic, C.; Sag, D.; Tacke, R.; Thomas, G. D.; Nowyhed, H.; Herrley, E.; Rasquinha, N.; McArdle, S.; Wu, R.; Peluso, E.; Metzger, D.; Ichinose, H.; Shaked, I.; Chodaczek, G.; Biswas, S. K.; Hedrick, C. C.The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical "patrolling" monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy.Item Open Access A role for LYNX2 in anxiety-related behavior(2009) Tekinay, A.B.; Nong, Y.; Miwa J.M.; Lieberam I.; Ibanez-Tallon I.; Greengard P.; Heintz, N.Anxiety disorders are the most prevalent mental disorders in developed societies. Although roles for the prefrontal cortex, amygdala, hippocampus and mediodorsal thalamus in anxiety disorders are well documented, molecular mechanisms contributing to the functions of these structures are poorly understood. Here we report that deletion of Lynx2, a mammalian prototoxin gene that is expressed at high levels in anxiety associated brain areas, results in elevated anxiety-like behaviors. We show that LYNX2 can bind to and modulate neuronal nicotinic receptors, and that loss of Lynx2 alters the actions of nicotine on glutamatergic signaling in the prefrontal cortex. Our data identify Lynx2 as an important component of the molecular mechanisms that control anxiety, and suggest that altered glutamatergic signaling in the prefrontal cortex of Lynx2 mutant mice contributes to increased anxiety-related behaviors.