Browsing by Subject "Minimization problems"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Unknown Deconvolution using projections onto the epigraph set of a convex cost function(IEEE, 2014) Tofighi, Mohammad; Bozkurt, Alican; Köse, K.; Çetin, A. EnisA new deconvolution algorithm based on making orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and sets corresponding to the cost function and observations are defined. If the utilized cost function is convex in RN, the corresponding epigraph set is also convex in RN+1. The deconvolution algorithm starts with an arbitrary initial estimate in RN+1. At each iteration cycle of the algorithm, first deconvolution projections are performed onto the hyperplanes representing observations, then an orthogonal projection is performed onto epigraph of the cost function. The method provides globally optimal solutions for total variation, l1, l2, and entropic cost functions.Item Unknown Projections onto convex sets (POCS) based optimization by lifting(IEEE, 2013) Çetin, A. Enis; Bozkurt, Alican; Günay, Osman; Habiboglu, Yusuf Hakan; Köse, K.; Onaran, İbrahim; Tofighi, Mohammad; Sevimli, Rasim AkınA new optimization technique based on the projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in RN the corresponding set which is the epigraph of the cost function is also a convex set in RN+1. The iterative optimization approach starts with an arbitrary initial estimate in R N+1 and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp; p < 1 may be handled by using the supporting hyperplane concept. The new POCS based method can be used in image deblurring, restoration and compressive sensing problems. © 2013 IEEE.Item Unknown Projections onto the epigraph set of the filtered variation function based deconvolution algorithm(IEEE, 2017) Tofighi, M.; Çetin, A. EnisA new deconvolution algorithm based on orthogonal projections onto the hyperplanes and the epigraph set of a convex cost function is presented. In this algorithm, the convex sets corresponding to the cost function are defined by increasing the dimension of the minimization problem by one. The Filtered Variation (FV) function is used as the convex cost function in this algorithm. Since the FV cost function is a convex function in RN, then the corresponding epigraph set is also a convex set in the lifted set in RN+1. At each step of the iterative deconvolution algorithm, starting with an arbitrary initial estimate in RN+1, first the projections onto the hyperplanes are performed to obtain the first deconvolution estimate. Then an orthogonal projection is performed onto the epigraph set of the FV cost function, in order to regularize and denoise the deconvolution estimate, in a sequential manner. The algorithm converges to the deblurred image.