Projections onto the epigraph set of the filtered variation function based deconvolution algorithm
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A new deconvolution algorithm based on orthogonal projections onto the hyperplanes and the epigraph set of a convex cost function is presented. In this algorithm, the convex sets corresponding to the cost function are defined by increasing the dimension of the minimization problem by one. The Filtered Variation (FV) function is used as the convex cost function in this algorithm. Since the FV cost function is a convex function in RN, then the corresponding epigraph set is also a convex set in the lifted set in RN+1. At each step of the iterative deconvolution algorithm, starting with an arbitrary initial estimate in RN+1, first the projections onto the hyperplanes are performed to obtain the first deconvolution estimate. Then an orthogonal projection is performed onto the epigraph set of the FV cost function, in order to regularize and denoise the deconvolution estimate, in a sequential manner. The algorithm converges to the deblurred image.