Projections onto convex sets (POCS) based optimization by lifting
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A new optimization technique based on the projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in RN the corresponding set which is the epigraph of the cost function is also a convex set in RN+1. The iterative optimization approach starts with an arbitrary initial estimate in R N+1 and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp; p < 1 may be handled by using the supporting hyperplane concept. The new POCS based method can be used in image deblurring, restoration and compressive sensing problems. © 2013 IEEE.