BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Metal oxides"

Filter results by typing the first few letters
Now showing 1 - 9 of 9
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Assembly of molten transition metal salt surfactant in a confined space for the synthesis of mesoporous metal oxide-rich metal oxide silica thin films
    (2011) Karakaya, C.; Türker, Y.; Albayrak, C.; Dag, Ö.
    Uniform and homogeneous coating of mesoporous materials with an active (catalytically, photonic, electrical) nanostructure can be very useful for a number of applications. Understanding chemical reactions in a confined space is important in order to design new advanced materials. In this work, we demonstrate that an extensive amount (as high as 53 mol percent) of transition metal salts can be confined between silica walls and two surfactant domains (cetyltrimethylammonium bromide, CTAB, and lauryl ether, C12H25(OCH2CH2)10OH, C12EO10) as molten salts and then converted into sponge-like mesoporous silica–metal oxides by thermal annealing. This investigation has been carried out using two different salts, namely, zinc nitrate hexahydrate, [Zn(H2O)6](NO3)2, and cadmium nitrate tetrahydrate, [Cd(H2O)4](NO3)2, in a broad range of salt concentrations. The ZnO (or CdO) layers are as thin as about ∼1.6 nm and are homogenously coated as crystalline nano-islands over the silica pore walls.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Atomic force microscopy: Methods and applications
    (Elsevier, 2017) Baykara, Mehmet Z.; Schwarz, U. D.; Lindon, J.; Tranter, G. E.; Koppenaal, D.
    This chapter provides an overview of atomic force microscopy, covering the fundamental aspects of the associated instrumentation and methodology as well as representative results from the literature highlighting a variety of application areas. In particular, atomic-resolution imaging and spectroscopy capabilities are emphasized, in addition to applications in biology, nanotribology and catalysis research. Finally, an outlook on emerging aspects and future prospects of atomic force microscopy is provided.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors
    (Institute of Physics Publishing, 2017) Bıyıklı, Necmi; Haider A.
    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor
    (A I P Publishing LLC, 1996-01) Minne, S. C.; Manalis, S. R.; Atalar, Abdullah; Quate, C. F.
    Using an atomic force microscope (AFM) with a silicon cantilever partially covered with a layer of zinc oxide (ZnO), we have imaged in the constant force mode by employing the ZnO as both a sensor and actuator. The cantilever deflection is determined by driving the ZnO at the second mechanical resonance while the tip is in contact with the sample. As the tip‐sample force varies, the mechanical boundary condition of the oscillating cantilever is altered, and the ZnO electrical admittance is changed. Constant force is obtained by offsetting the ZnO drive so that the admittance remains constant. We have also used the ZnO as an actuator and sensor for imaging in the intermittent contact mode. In both modes, images produced by using the ZnO as a sensor are compared to images acquired with a piezoresistive sensor.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Dynamic control of photoresponse in ZnO-based thin-film transistors in the visible spectrum
    (IEEE, 2013-04) Aygun, L. E.; Oruc, F. B.; Atar, F. B.; Okyay, Ali Kemal
    We present ZnO-channel thin-film transistors with actively tunable photocurrent in the visible spectrum, although ZnO band edge is in the ultraviolet. ZnO channel is deposited by atomic layer deposition technique at a low temperature (80), which is known to introduce deep level traps within the forbidden band of ZnO. The gate bias dynamically modifies the occupancy probability of these trap states by controlling the depletion region in the ZnO channel. Unoccupied trap states enable the absorption of the photons with lower energies than the bandgap of ZnO. Photoresponse to visible light is controlled by the applied voltage bias at the gate terminal. © 2009-2012 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films
    (A I P Publishing LLC, 2015) Ceylan, A.; Rumaiz, A. K.; Caliskan, D.; Ozcan, S.; Özbay, Ekmel; Woicik, J. C.
    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA. © 2015 AIP Publishing LLC.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Water-soluble non-polymeric electrospun cyclodextrin nanofiber template for the synthesis of metal oxide tubes by atomic layer deposition
    (Royal Society of Chemistry, 2014) Celebioglu A.; Vempati S.; Ozgit Akgun, C.; Bıyıklı, Necmi; Uyar, Tamer
    We report on the suitability of water-soluble non-polymeric electrospun cyclodextrin (CD) nanofiber templates by using atomic layer deposition (ALD) to yield metal oxide tubes. To demonstrate this, water-soluble electrospun CD nanofibers were chosen as template to produce metal oxide tubes where we have tested two examples of ALD coatings, namely, Al2O3 and ZnO. After the ALD coating on the CD nanofibers, the CD core is simply dissolved in water to yield metal oxide tubes. Morphological investigations suggested that Al2O3 is smoother in contrast to ZnO which shows a grainy structure. Structural characterization evidenced amorphous Al2O3 and highly crystalline ZnO. Given the applicability of Al2O3 and ZnO in various contexts the ionic states of Al, Zn and O are also investigated. After the washing step to remove the CD core, Al2O3 developed some hydroxylation, while ZnO hosts various oxygen related functional groups.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    XPS analysis with external bias: a simple method for probing differential charging
    (John Wiley & Sons Ltd., 2004) Ertas, G.; Süzer, Şefik
    The XPS spectra of thermally grown oxide layers on Si, Al, W and Hf substrates have been recorded while the samples were subjected to external d.c. voltage bias. The bias induces additional shifts in the measured binding energy differences between the XPS peaks of the oxide and that of the metal substrate in Si and Al (as probed both in the 2p and the KLL Auger regions), but not in W and Hf (as probed in the 4f region). These bias induced shifts are attributed to differential charging between the oxide layer and the substrate, which in turn is postulated to be related to the capacitance and inversely to the dielectric constant of the oxide layer. Accordingly, silicon dioxide with the smallest dielectric constant undergoes the largest differential charging, aluminium oxide is in the middle and no appreciable charging can be induced in the high-k tungsten and hafnium oxides, all of which are ∼6 nm thick. Copyright © 2004 John Wiley & Sons, Ltd.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    ZnO based optical modulator in the visible wavelengths
    (SPIE, 2013) Okyay, Ali Kemal; Aygun, Levent E.; Oruç, Feyza B.
    In order to demonstrate tunable absorption characteristics of ZnO, photodetection properties of ZnO based thin-film transistors are investigated. By controlling the occupancy of the trap states, the optical absorption coefficient of ZnO in the visible light spectrum is actively tuned with gate bias. An order of magnitude change of absorption coefficient is achieved. An optical modulator is proposed exploiting such tunable absorption mechanism. © 2013 SPIE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback