Browsing by Subject "Medical applications"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Chaotic behavior of gas bubble in non-Newtonian fluid: A numerical study(2013) Behnia, S.; Mobadersani F.; Yahyavi, M.; Rezavand, A.In the present paper, the nonlinear behavior of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid domain has been investigated. Due to the importance of the bubble in the medical applications such as drug, protein or gene delivery, blood is assumed to be the reference fluid. Effects of viscoelasticity term, Deborah number, amplitude and frequency of the acoustic pulse are studied. We have studied the dynamic behavior of the radial response of bubble using Lyapunov exponent spectra, bifurcation diagrams, time series and phase diagram. A period-doubling bifurcation structure is predicted to occur for certain values of the effects of parameters. The results show that by increasing the elasticity of the fluid, the growth phenomenon will be unstable. On the other hand, when the frequency of the external pulse increases the bubble growth experiences more stable condition. It is shown that the results are in good agreement with the previous studies. © 2013 Springer Science+Business Media Dordrecht.Item Open Access A coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia(IFAC, 2014) Avila, J. L.; Bonnet, C.; Özbay, Hitay; Clairambault, J.; Niculescu, S. I.; Hirsch, P.; Delhommeau, F.In this paper we propose a coupled model for healthy and cancerous cell dynamics in Acute Myeloid Leukemia. The PDE-based model is transformed to a nonlinear distributed delay system. For an equilibrium point of interest, necessary and sufficient conditions of local asymptotic stability are given. Simulation examples are given to illustrate the results.Item Open Access Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications(Elsevier, 2017-12) Bhullar, S. K.; Rana, D.; Lekesiz, H.; Bedeloglu, A. C.; Ko, J.; Cho, Y.; Aytac Z.; Uyar, Tamer; Jun, M.; Ramalingam, M.The main objective of this study was to fabricate poly (ε-caprolactone) (PCL)-based auxetic nanofiber membranes and characterize them for their mechanical and physicochemical properties. As a first step, the PCL nanofibers were fabricated by electrospinning with two different thicknesses of 40 μm (called PCL thin membrane) and 180 μm (called PCL thick membrane). In the second step, they were tailored into auxetic patterns using femtosecond laser cut technique. The physicochemical and mechanical properties of the auxetic nanofiber membranes were studied and compared with the conventional electrospun PCL nanofibers (non-auxetic nanofiber membranes) as a control. The results showed that there were no significant changes observed among them in terms of their chemical functionality and thermal property. However, there was a notable difference observed in the mechanical properties. For instance, the thin auxetic nanofiber membrane showed the magnitude of elongation almost ten times higher than the control, which clearly demonstrates the high flexibility of auxetic nanofiber membranes. This is because that the auxetic nanofiber membranes have lesser rigidity than the control nanofibers under the same load which could be due to the rotational motion of the auxetic structures. The major finding of this study is that the auxetic PCL nanofiber membranes are highly flexible (10-fold higher elongation capacity than the conventional PCL nanofibers) and have tunable mechanical properties. Therefore, the auxetic PCL nanofiber membranes may serve as a potent material in various biomedical applications, in particular, tissue engineering where scaffolds with mechanical cues play a major role.Item Open Access Effect of magnetic field on the radial pulsations of a gas bubble in a non-Newtonian fluid(Elsevier Ltd, 2015) Behnia, S.; Mobadersani F.; Yahyavi, M.; Rezavand, A.; Hoesinpour, N.; Ezzat, A.Dynamics of acoustically driven bubbles' radial oscillations in viscoelastic fluids are known as complex and uncontrollable phenomenon indicative of highly active nonlinear as well as chaotic behavior. In the present paper, the effect of magnetic fields on the non-linear behavior of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid domain has been investigated. The constitutive equation [Upper-Convective Maxwell (UCM)] was used for modeling the rheological behaviors of the fluid. Due to the importance of the bubble in the medical applications such as drug, protein or gene delivery, blood is assumed to be the reference fluid. It was found that the magnetic field parameter (B) can be used for controlling the nonlinear radial oscillations of a spherical, acoustically forced gas bubble in nonlinear viscoelastic media. The relevance and importance of this control method to biomedical ultrasound applications were highlighted. We have studied the dynamic behavior of the radial response of the bubble before and after applying the magnetic field using Lyapunov exponent spectra, bifurcation diagrams and time series. A period-doubling bifurcation structure was predicted to occur for certain values of the parameters effects. Results indicated its strong impact on reducing the chaotic radial oscillations to regular ones. © 2015 Elsevier Ltd. All rights reserved.Item Open Access Motion-compensated prediction based algorithm for medical image sequence compression(Elsevier BV, 1995-09) Oǧuz, S. H.; Gerek, Ö. N.; Çetin, A. EnisA method for irreversible compression of medical image sequences is described. The method relies on discrete cosine transform and motion-compensated prediction to reduce intra- and inter-frame redundancies in medical image sequences. Simulation examples are presented.Item Open Access A new model of cell dynamics in Acute Myeloid Leukemia involving distributed delays(2012) Avila, J. L.; Bonnet, C.; Clairambault, J.; Özbay, Hitay; Niculescu, S. I.; Merhi, F.; Tang, R.; Marie, J. P.In this paper we propose a refined model for the dynamical cell behavior in Acute Myeloid Leukemia (AML) compared to (Özbay et al, 2012) and (Adimy et al, 2008).We separate the cell growth phase into a sequence of several sub-compartments. Then, with the help of the method of characteristics, we show that the overall dynamical system of equations can be reduced to two coupled nonlinear equations with four internal sub-systems involving distributed delays. © 2012 IFAC.Item Open Access Protein-releasing conductive anodized alumina membranes for nerve-interface materials(Elsevier Ltd, 2016) Altuntas, S.; Buyukserin, F.; Haider, A.; Altinok, B.; Bıyıklı, Necmi; Aslim, B.Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart.Item Open Access Serum adenosine deaminase levels in patients with brucellosis and in healthy subjects(TÜBİTAK, 2004) Cesur, S.; Sunguroğlu, K.; Ahmed, Kamruddin; Tezeren, D.; Keseci, N. O.; Aksaray, S.The aim of this study was to determine the serum adenosine deaminase (ADA) levels in patients with brucellosis and compare them with the results of healthy individuals. Forty-eight subject were enrolled in this study : 34 patients with brucellosis and 14 healthy individuals. Serum ADA activity was assessed by spectrophotometer in patients with brucellosis and statistically compared with that of healthy individuals. A normal range of serum ADA was considered 5-35 IU/I. Serum ADA levels were also compared with Brucella agglutinations titers and serum C reactive protein (CRP). Serum ADA levels were found to be significantly higher in patients with brucellosis than in healthy individuals (43.45 ±24.19 IU/I and 27.5 ± 9.3 IU/I, respectively) (P < 0.01). Serum ADA activity did not show any correlation between the Brucella agglutination titer and CRP level. Serum ADA level showed significant alterations in patients with brucellosis compared to healthy subjects. We concluded that serum ADA level may be used in the follow up of patients with brucellosis together with clinical and other laboratory findings.Item Open Access Spiral microfluidics device for continuous flow PCR(ASME, 2013) Salemmilani, Reza; Çetin, BarbarosPolymerase-chain-Reaction (PCR) is a thermal cycling (repeated heating and cooling of PCR solution) process for DNA amplification. PCR is the key ingredient in many biomedical applications. One key feature for the success of the PCR is to control the temperature of the solution precisely at the desired temperature levels required for the PCR in a cyclic manner. Microfluidics offers a great advantage over conventional techniques since minute amounts of PCR solution can be heated and cooled with a high rate in a controlled manner. In this study, a microfluidic platform has been proposed for continuous-flow PCR. The microfluidic device consists of a spiral channel on a glass wafer with integrated chromium microheaters. Sub-micron thick microheaters are deposited beneath the micro-channels to facilitate localized heating. The microfluidic device is modeled using COMSOL MultiphysicsR . The fabrication procedure of the device is also discussed and future research directions are addressed. With its compact design, the proposed system can easily be coupled with an integrated microfluidic device to be used in biomedical applications. Copyright © 2013 by ASME.Item Open Access Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics(Elsevier, 2016) Yavuz, C.; Oliaei, S. N. B.; Cetin, B.; Yesil-Celiktas, O.The sterilization of microfluidic chips is a vital step of the fabrication process prior to the customer use in biomedical applications. The aim of this study was to analyze the influence of different sterilization techniques and to compare the characteristics of the material before and after sterilization of polymethylmethacrylate (PMMA) microchips. For this, supercritical carbon dioxide (SC-CO2) along with standard sterilization methods such as ultraviolet (UV), heat (autoclaving), ethylene oxide (EtO) and hydrogen peroxide (H2O2) were applied. The treated microchips were analyzed by Scanning Electron Microscopy, Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy and Laser Scanning Microscopy in order to ascertain any changes in the chemical structure and surface morphology. The optimum sterilization parameters for SC-CO2 were elicited as 120 bar, 40°C and 60 min which provided complete sterility and did not alter the main properties of the polymer along with EtO and H2O2 sterilizations unlike heat and UV treatments. However, surface roughness and microchannel profiles were negatively affected. Although complete sterility was achieved, each protocol has its own strengths and weaknesses. © 2015 Elsevier B.V. All rights reserved.