Browsing by Subject "Magnetic fields"
Now showing 1 - 20 of 36
- Results Per Page
- Sort Options
Item Open Access Bean-Livingston surface barriers for flux penetration in Bi 2Sr 2CaCu 2O 8+δ single crystals near the transition temperature(2011) Mihalache V.; Dede, M.; Oral, A.; Miu L.The first field for magnetic flux penetration H p in Bi 2Sr 2CaCu 2O 8+δ (Bi-2212) single crystals near the critical temperature T c was investigated from the local magnetic hysteresis loops registered for different magnetic field H sweeping rates by using a scanning Hall probe microscope (SHPM) with ∼1 μm effective spatial resolution. Evidences for a significant role of the surface barrier were obtained: the asymmetric shape of the magnetization loops and an anomalous change in the slope of H p(T) close to T c. © 2011 Elsevier B.V. All rights reserved.Item Open Access Chiral single-wall gold nanotubes(American Physical Society, 2004) Senger, R. T.; Dag, S.; Çıracı, SalimThe formation of freestanding and tip-suspended chiral-wall (n,m) nanotubes, which were composed of helical atomic strands, from gold atoms was investigated using first-principles calculations, where (n,m) notation defines the structure of the tube. The tubes with 3≤n≤5 were found to be stable and exhibited electronic and transport properties investigated. The (5,3) gold tube was energetically the most favourable. It was observed from the quantum ballistic conductance, band structure and charge density analysis that the current on these wires was less chiral, and no direct correlation between the numbers of conduction channels and helical strands was found.Item Open Access Collective modes in flux line liquids(IOP, 2000) Tanatar, Bilal; Oral, A.We study the collective modes of flux line liquids such as occur in the type-II superconductors of recent interest composed of two-dimensional layered structures. Starting from the vortex-vortex interaction and employing the dielectric formalism within the random-phase approximation, we find propagating sound modes in the long-wavelength limit.Item Open Access Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers(Optical Society of American (OSA), 2011) Ozbey, B.; Aktas O.Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed. © 2011 Optical Society of America.Item Open Access DC shift based image reconstruction for magnetic particle imaging(IEEE, 2017) Sarıca, Damla; Demirel, Ömer Burak; Sarıtaş, Emine ÜlküMagnetic Particle Imaging (MPI) is a new imaging technology that images the spatial distribution of iron oxide nanoparticles. Since the magnetic field strength that can be safely applied in MPI is limited, the field-of-view (FOV) must be divided into partial FOVs. Because the excitation magnetic field causes direct feedthrough on the receiver coil, the excitation frequency must be filtered out of the MPI signal. During this process, the nanoparticle signal at the same frequency is also lost, as a result of which each partial FOV experiences different levels of DC shift. In the standard MPI image reconstruction, these DC shifts are calculated from neighboring overlapping partial FOVs. Here, we propose a novel method that directly reconstructs the MPI image from the calculated DC shift values. Especially in the case of low bandwidth signal acquisitions, this method yields higher resolution images when compared to the standard method. The simulation results at various signal-to-noise ratios (SNR) show that the proposed method produces 6-8 dB increase in peak SNR and yields images that closely match the ideal image.Item Open Access Design and determination of stator geometry for axial flux permanent magnet free rod rotor synchronous motor(2011) Kalender O.; Ege, Y.; Nazlibilek, S.During designing a new axial flux permanent magnet free rod rotor synchronous motor, it is important to know before hand in which phase the largest angular velocity can occur, what is the ways to reduce the power consumption, how to achieve to increase or decrease the rotation speed by changing the core geometry. Therefore, presenting these preliminary information that are necessary for the design of a free rod rotor synchronous motor to the researchers is the aim of this work. In this respect, this study presents the design and geometrical dimensions of the stator for a new synchronous motor which is an axial flux permanent magnet free rod machine with three, four, five and six phases. This type of motors are an innovative approach especially for the applications used in industrial stirrers. Each type of stator is designed such that it has an appropriate number of phases. The rotating magnetic field over the stator is established by a PIC based microcontroller feeding the interface circuit to the stator wounds. The maximum angular speeds of bar magnet rotors with four different lengths and masses are calculated theoretically and determined experimentally. In addition, the effects of the distance between the rotor and stator, the angular speed of the rotor within the limits of the operation, and the volume of the liquid to be stirred to the power applied are investigated. Furthermore, the effects of the lengths and angular speeds of the bar magnet rotors to the distance between the rotor and stator are determined. In the light of the information obtained and taking into account the power used, the most appropriate parameters and variables such as the stator geometry changing with the phase used, the length of rotor, the distance between the rotor and stator and the angular speeds of rotor are determined. © 2011 Elsevier Ltd. All rights reserved.Item Open Access Determination of the in-plane effective mass and quantum lifetime of 2D electrons in AlGaN/GaN based HEMTs(2011) Celik O.; Tiras, E.; Ardali, S.; Lisesivdin, S.B.; Özbay, EkmelMagnetoresistance and Hall resistance measurements have been used to investigate the electronic transport properties of AlGaN/GaN based HEMTs. The Shubnikov-de Haas (SdH) oscillations from magnetoresistance, is obtained by fitting the nonoscillatory component to a polynomial of second degree, and then subtracting it from the raw experimental data. It is shown that only first subband is occupied with electrons. The two-dimensional (2D) carrier density and the Fermi energy with respect to subband energy (EF-E1) have been determined from the periods of the SdH oscillations. The in-plane effective mass (m*) and the quantum lifetime (τq) of electrons have been obtained from the temperature and magnetic field dependencies of the SdH amplitude, respectively. The in-plane effective mass of 2D electrons is in the range between 0.19 m0 and 0.22 m0. Our results for in-plane effective mass are in good agreement with those reported in the literature © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Effect of magnetic field on the radial pulsations of a gas bubble in a non-Newtonian fluid(Elsevier Ltd, 2015) Behnia, S.; Mobadersani F.; Yahyavi, M.; Rezavand, A.; Hoesinpour, N.; Ezzat, A.Dynamics of acoustically driven bubbles' radial oscillations in viscoelastic fluids are known as complex and uncontrollable phenomenon indicative of highly active nonlinear as well as chaotic behavior. In the present paper, the effect of magnetic fields on the non-linear behavior of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid domain has been investigated. The constitutive equation [Upper-Convective Maxwell (UCM)] was used for modeling the rheological behaviors of the fluid. Due to the importance of the bubble in the medical applications such as drug, protein or gene delivery, blood is assumed to be the reference fluid. It was found that the magnetic field parameter (B) can be used for controlling the nonlinear radial oscillations of a spherical, acoustically forced gas bubble in nonlinear viscoelastic media. The relevance and importance of this control method to biomedical ultrasound applications were highlighted. We have studied the dynamic behavior of the radial response of the bubble before and after applying the magnetic field using Lyapunov exponent spectra, bifurcation diagrams and time series. A period-doubling bifurcation structure was predicted to occur for certain values of the parameters effects. Results indicated its strong impact on reducing the chaotic radial oscillations to regular ones. © 2015 Elsevier Ltd. All rights reserved.Item Open Access Effects of pulse duration on magnetostimulation thresholds(Wiley-Blackwell Publishing, Inc., 2015-06) Saritas, E. U.; Goodwill, P. W.; Conolly, S. M.Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magneto stimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27±5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 3040 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations. Results: The magnetostimulation limits decreased with increasing pulse duration (Tpulse). For Tpulse < 18 ms, the thresholds were significantly higher than at the longest pulse durations (p < 0.01, paired Wilcoxon signed-rank test). The normalized magnetostimulation threshold (BNorm) vs duration curve at all three frequencies agreed almost identically, indicating that the observed effect is independent of the operating frequency. At the shortest pulse duration (Tpulse ≈ 2 ms), the thresholds were approximately 24% higher than at the asymptotes. The thresholds decreased to within 4% of their asymptotic values for Tpulse > 20 ms. These trends were well characterized (R2 = 0.78) by a stretched exponential function given by BNorm = 1+αe?(Tpulse/β)γ, where the fitted parameters were α = 0.44, β = 4.32, and γ = 0.60. Conclusions: This work shows for the first time that the magnetostimulation thresholds decrease with increasing pulse duration, and that this effect is independent of the operating frequency. Normalized threshold vs duration trends are almost identical for a 20-fold range of frequencies: the thresholds are significantly higher at short pulse durations and settle to within 4% of their asymptotic values for durations longer than 20 ms. These results emphasize the importance of matching the human-subject experiments to the imaging conditions of a particular setup. Knowing the dependence of the safety limits to all contributing factors is critical for increasing the time-efficiency of imaging systems that utilize time-varying magnetic fields. © 2015 American Association of Physicists in Medicine.Item Open Access EFIE and MFIE, why the difference?(IEEE, 2008-07) Chew W.C.; Davis, C. P.; Warnick, K. F.; Nie, Z. P.; Hu, J.; Yan, S.; Gürel, LeventEFIE (electric field integral equation) suffers from internal resonance, and the remedy is to use MFIE (magnetic field integral equation) to come up with a CFIE (combined field integral equation) to remove the internal resonance problem. However, MFIE is fundamentally a very different integral equation from EFIE. Many questions have been raised about the differences.Item Open Access Evolution of the Hofstadter butterfly in a tunable optical lattice(American Physical Society, 2015) Yllmaz, F.; Ünal, F. N.; Oktel, M. O.Recent advances in realizing artificial gauge fields on optical lattices promise experimental detection of topologically nontrivial energy spectra. Self-similar fractal energy structures generally known as Hofstadter butterflies depend sensitively on the geometry of the underlying lattice, as well as the applied magnetic field. The recent demonstration of an adjustable lattice geometry [L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature (London) 483, 302 (2012)NATUAS0028-083610.1038/nature10871] presents a unique opportunity to study this dependence. In this paper, we calculate the Hofstadter butterflies that can be obtained in such an adjustable lattice and find three qualitatively different regimes. We show that the existence of Dirac points at zero magnetic field does not imply the topological equivalence of spectra at finite field. As the real-space structure evolves from the checkerboard lattice to the honeycomb lattice, two square-lattice Hofstadter butterflies merge to form a honeycomb lattice butterfly. This merging is topologically nontrivial, as it is accomplished by sequential closings of gaps. Ensuing Chern number transfer between the bands can be probed with the adjustable lattice experiments. We also calculate the Chern numbers of the gaps for qualitatively different spectra and discuss the evolution of topological properties with underlying lattice geometry.Item Open Access Focused RF hyperthermia using magnetic fluids(WILEY, 2009-04-27) Tasci, T. O.; Vargel, I.; Arat, A.; Guzel, E.; Korkusuz, P.; Atalar, ErginHeat therapies such as hyperthermia and thermoablation are very promising approaches in the treatment of cancer. Compared with available hyperthermia modalities, magnetic fluid hyperthermia (MFH) yields better results in uniform heating of the deeply situated tumors. In this approach, fluid consisting of superparamagnetic particles (magnetic fluid) is delivered to the tumor. An alternating (ac) magnetic field is then used to heat the particles and the corresponding tumor, thereby ablating it. However, one of the most serious shortcomings of this technique is the unwanted heating of the healthy tissues. This results from the magnetic fluid diffusion from the tumor to the surrounding tissues or from incorrect localization of the fluids in the target tumor area. In this study, the authors demonstrated that by depositing appropriate static (dc) magnetic field gradients on the alternating (ac) magnetic fields, focused heating of the magnetic particles can be achieved. A focused hyperthermia system was implemented by using two types of coils: dc and ac coils. The ac coil generated the alternating magnetic field responsible for the heating of the magnetic particles; the dc coil was used to superimpose a static magnetic field gradient on the alternating magnetic field. In this way, focused heating of the particles was obtained in the regions where the static field was dominated by the alternating magnetic field. In vitro experiments showed that as the magnitude of the dc solenoid currents was increased from 0 to 1.8 A, the specific absorption rate (SAR) of the superparamagnetic particles 2 cm apart from the ac solenoid center decreased by a factor of 4.5, while the SAR of the particles at the center was unchanged. This demonstrates that the hyperthermia system is capable of precisely focusing the heat at the center. Additionally, with this approach, shifting of the heat focus can be achieved by applying different amounts of currents to individual dc solenoids. In vivo experiments were performed with adult rats, where magnetic fluids were injected percutaneously into the tails (with homogeneous fluid distribution inside the tails). Histological examination showed that, as we increased the dc solenoid current from 0.5 to 1.8 A, the total burned volume decreased from 1.6 to 0.2 cm3 verifying the focusing capability of the system. The authors believe that the studies conducted in this work show that MFH can be a much more effective method with better heat localization and focusing abilities.Item Open Access Heating of magnetic fluid systems driven by circularly polarized magnetic field(Elsevier BV * North-Holland, 2010) Ahsen, O. O.; Yilmaz, U.; Aksoy, M. Deniz; Ertas, G.; Atalar, ErginA theory is presented to calculate the heat dissipation of a magnetic suspension, a ferrofluid, driven by circularly polarized magnetic field. Theory is tested by in vitro experiments and it is shown that, regardless of the character of the relaxation process, linearly and circularly polarized magnetic field excitations, having the same root-mean-square magnitude, are equivalent in terms of heating efficiency.Item Open Access Hofstadter butterfly evolution in the space of two-dimensional bravais lattices(American Physical Society, 2017) Yllmaz, F.; Oktel, M. Ö.The self-similar energy spectrum of a particle in a periodic potential under a magnetic field, known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold-atom experiments necessitate the consideration of these self-similar spectra for the most general two-dimensional lattice. In a previous work [F. Yllmaz, Phys. Rev. A 91, 063628 (2015)PLRAAN1050-294710.1103/PhysRevA.91.063628], we investigated the evolution of the spectrum for an experimentally realized lattice which was tuned by changing the unit-cell structure but keeping the square Bravais lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point-symmetry groups. We model the optical lattice with a sinusoidal real-space potential and obtain the tight-binding model for any lattice geometry by calculating the Wannier functions. We introduce the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The transition between the two most symmetric lattices, i.e., the triangular and the square lattices, displays the importance of bipartite symmetry featuring deformation as well as closing of some of the major energy gaps. The transitions from the square to rectangular lattice and from the triangular to centered rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the Chern numbers of the major gaps and Chern number transfer between bands during the transitions. We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.Item Open Access Imaging capability of pseudomorphic high electron mobility transistors, AlGaN/GaN, and Si micro-Hall probes for scanning Hall probe microscopy between 25 and 125 °c(American Vacuum Society, 2009) Akram, R.; Dede, M.; Oral, A.The authors present a comparative study on imaging capabilities of three different micro-Hall probe sensors fabricated from narrow and wide band gap semiconductors for scanning hall probe microscopy at variable temperatures. A novel method of quartz tuning fork atomic force microscopy feedback has been used which provides extremely simple operation in atmospheric pressures, high-vacuum, and variable-temperature environments and enables very high magnetic and reasonable topographic resolution to be achieved simultaneously. Micro-Hall probes were produced using optical lithography and reactive ion etching process. The active area of all different types of Hall probes were 1×1 μ m2. Electrical and magnetic characteristics show Hall coefficient, carrier concentration, and series resistance of the hall sensors to be 10 mG, 6.3× 1012 cm-2, and 12 k at 25 °C and 7 mG, 8.9× 1012 cm-2 and 24 k at 125 °C for AlGaNGaN two-dimensional electron gas (2DEG), 0.281 mG, 2.2× 1014 cm-2, and 139 k at 25 °C and 0.418 mG, 1.5× 1014 cm-2 and 155 k at 100 °C for Si and 5-10 mG, 6.25× 1012 cm-2, and 12 k at 25 °C for pseudomorphic high electron mobility transistors (PHEMT) 2DEG Hall probe. Scan of magnetic field and topography of hard disc sample at variable temperatures using all three kinds of probes are presented. The best low noise image was achieved at temperatures of 25, 100, and 125 °C for PHEMT, Si, and AlGaNGaN Hall probes, respectively. This upper limit on the working temperature can be associated with their band gaps and noise associated with thermal activation of carriers at high temperatures.Item Open Access Improving RF safety in MRI by modifying the electric field distribution(IEEE, 2011) Eryaman, Yiğitcan; Atalar, ErginIn this work we demonstrate that the radiofrequency (RF) electric field in magnetic resonance imaging (MRI) can be modified in order to enhance patient safety. The heating of metallic devices in MRI is directly related to electric field distribution. On the other hand the MR image homogeneity is related to forward polarized component of the magnetic field (transmit sensitivity). In order to prevent heating, electric field-free zones should be generated in the body without significantly altering the transmit sensitivity. For this purpose the linearly polarized birdcage coil is proposed as a metallic device friendly MRI coil. The zero electric field plane of the linear birdcage coil is coincided with the location of the metallic device and the heating is reduced as shown by simulations and experiments. One disadvantage of this approach is, the linear coils generate twice as much whole body average SAR when compared to quadrature birdcage coils. In order to solve this problem simulations are performed to find electromagnetic field solutions with reduced average SAR and uniform transmit sensitivity. © 2011 IEEE.Item Open Access Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap(American Physical Society, 2015) Ünal, F. N.; Hetényi, B.; Oktel, M. Ö.The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.Item Open Access Local current distribution at large quantum dots (QDs): A self-consistent screening model(Elsevier B.V., 2008) Krishna, P. M.; Siddiki, A.; Güven, K.; Hakioǧlu T.We report the implementation of the self-consistent Thomas-Fermi screening theory, together with the local Ohm's law to a quantum dot system in order to obtain local current distribution within the dot and at the leads. We consider a large dot (size > 700 nm) defined by split gates, and coupled to the leads. Numerical calculations show that the non-dissipative current is confined to the incompressible strips. Due to the non-linear screening properties of the 2DES at low temperatures, this distribution is highly sensitive to external magnetic field. Our findings support the phenomenological models provided by the experimental studies so far, where the formation of the (direct) edge channels dominate the transport.Item Open Access Local-pair superconductivity in very high magnetic fields(Scientific and Technical Research Council of Turkey - TUBITAK,Turkiye Bilimsel ve Teknik Arastirma Kurumu, 1996) Gedik, ZaferSuperconductivity of narrow-band systems with local, short-range attractive interaction in very high magnetic fields is discussed. By examining the excitation spectra of both type-II superconductors with BCS like interaction and local-pair superconductors with negative-U type interaction, it is concluded that gapless single particle energy spectrum is a characteristic feature of superconductivity in very high magnetic fields.Item Open Access Magnetic field effects on an electron near an impenetrable dielectric surface(1996) Saqqa, B.; Senger, R. T.; Erçelebi, A.The interaction of an extrinsic electron with the surface optical modes of a semi-infinite medium is retrieved under the effect of a weak magnetic field. It is observed that for an electron in a bound state near the surface, the magnetic field enhances the effective phonon coupling rather prominently and thus leads to an increased degree of localisation of the electron towards the surface. This feature is seen to be more marked for larger coupling strengths. © Tübi̇tak.