Browsing by Subject "Industrial robots"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Explicit time-delay compensation in teleoperation: an adaptive control approach(John Wiley and Sons Ltd, 2016) Abidi K.; Yildiz, Y.; Korpe, B. E.This paper proposes a control framework that addresses the destabilizing effect of communication time delays and system uncertainties in telerobotics, in the presence of force feedback. Force feedback is necessary to obtain transparency, which is providing the human operator as close a feel as possible of the environment where the slave robot is operating. Achieving stability and providing transparency are conflicting goals. This is the major reason why, currently, a very few, if at all, fully operational force feedback teleoperation devices exist except for research environments. The proposed framework handles system uncertainty with adaptation and communication time delays with explicit delay compensation. The technology that allows this explicit adaptive time-delay compensation is inspired by Massachusetts Institute of Technology (MIT)'s Adaptive Posicast Controller. We provide simulation results that demonstrate stable explicit adaptive delay compensation in a force-reflecting teleoperation set up. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.Item Open Access Pure cycles in flexible robotic cells(Elsevier, 2009) Gultekin, H.; Karasan O. E.; Akturk, M. S.In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as well as parameters. We focus on two specific cycles among the huge class of pure cycles. We prove that, in most of the regions, either one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles. We also prove that the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines.Item Open Access Scheduling in a three-machine flexible robotic cell(IFAC, 2006) Gültekin, Hakan; Aktürk, M. Selim; Karasan, Oya EkinIn this study, a three-machine flexible robotic manufacturing cell in which the CNC machines are used is considered. These machines are highly flexible and are capable of performing several different operations. Each machine is assumed to be capable of performing all of the required operations of each part. As a consequence of this assumption, a new class of cycles is defined and three simple and widely used cycles among this class is proposed. The regions of optimality for these cycles as well as the worst case performances are derived.