Pure cycles in flexible robotic cells

Date

2009

Authors

Gultekin, H.
Karasan O. E.
Akturk, M. S.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Computers & Operations Research

Print ISSN

0305-0548

Electronic ISSN

1873-765X

Publisher

Elsevier

Volume

36

Issue

2

Pages

329 - 343

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
13
downloads

Series

Abstract

In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as well as parameters. We focus on two specific cycles among the huge class of pure cycles. We prove that, in most of the regions, either one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles. We also prove that the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)