Browsing by Subject "Indium compounds"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Electrostatic force spectroscopy of near surface localized states(Institute of Physics Publishing Ltd., 2005) Dâna, A.; Yamamoto, Y.Electrostatic force microscopy at cryogenic temperatures is used to probe the electrostatic interaction of a conductive atomic force microscopy tip and electronic charges trapped in localized states in an insulating layer on a semiconductor. Measurement of the frequency shift of the cantilever as a function of tip-sample bias voltage shows discrete peaks at certain voltages when the tip is located near trap centres. These discrete changes in frequency are attributed to one by one filling of individual electronic states when the quantized energies traverse the substrate conduction band Fermi energy as the tip-sample voltage is increased. Theoretical analysis of the experiment suggests that such a measurement of the cantilever frequency shift as a function of bias voltage can be interpreted as an AC force measurement, from which spectroscopic information about the location and energy of localized states can be deduced. Experimental results from the study of a sample with InAs quantum dots as trap centres are presented.Item Open Access High-performance ALGaN-based visible-blind resonant cavity enhanced Schottky photodiodes(Materials Research Society, 2003-04) Kimukin, İbrahim; Bıyıklı, Necmi; Kartaloğlu, Tolga; Aytür, Orhan; Özbay, EkmelWe have designed, fabricated and tested resonant cavity enhanced visible-blind AlGaN-based Schottky photodiodes. The bottom mirror of the resonant cavity was formed with a 20 pair AlN/AlGaN Bragg mirror. The devices were fabricated using a microwave compatible fabrication process. Au and indium-tin-oxide (ITO) thin films were used for Schottky contact formation. ITO and Au-Schottky devices exhibited resonant peaks with 0.153 A/W and 0.046 A/W responsivity values at 337 nm and 350 nm respectively. Temporal high-speed measurements at 357 nm resulted in fast pulse responses with pulse widths as short as 77 ps. The fastest UV detector had a 3-dB bandwidth of 780 MHz.Item Open Access ITO-schottky photodiodes for high-performance detection in the UV-IR spectrum(IEEE, 2004) Bıyıklı, Necmi; Kimukin, I.; Butun, B.; Aytür, O.; Özbay, EkmelHigh-performance vertically illuminated Schottky photodiodes with indium-tin-oxide (ITO) Schottky layers were designed, fabricated, and tested. Ternary and quarternary III-V material systems (AlGaN-GaN, AlGaAs-GaAs, InAlGaAs-InP, and InGaAsP-InP) were utilized for detection in the ultraviolet (UV) (λ < 400 nm), near-IR (λ ∼ 850 nm), and IR (λ ∼ 1550 nm) spectrum. The material properties of thin ITO films were characterized. Using resonant-cavity-enhanced (RCE) detector structures, improved efficiency performance was achieved. Current-voltage, spectral responsivity, and high-speed measurements were carried out on the fabricated ITO-Schottky devices. The device performances obtained with different material systems are compared.Item Open Access Lasing modes of infinite periodic chain of quantum wires(IEEE, 2009-06-07) Byelobrov, V. O.; Benson, T. M.; Sewell, P.; Altıntaş, Ayhan; Nosich, A. I.In this paper, we study the scattering and eigenvalue problems for a periodic open optical resonator that is an infinite chain of active circular cylindrical quantum wires standing in free space. The scattering problem is solved by the method of partial separation of variables. The eigenvalue problem differs from the first one by the absence of the incident field and presence of "active properties" of cylinders and yields the frequencies and thresholds of lasing. ©2009 IEEE.Item Open Access Room-temperature scanning Hall probe microscope (RT-SHPM) imaging of garnet films using new high-performance InSb sensors(IEEE, 2002) Oral, Ahmet; Kaval, Murat; Dede, Münir; Masuda, H.; Okamoto, A.; Shibasaki, I.; Sandhu, A.The room-temperature scanning Hall probe microscopy (RT-SHPM) imaging of garnet films using high-performance InSb sensors was discussed. The high-performance InSb micro-Hall sensors were fabricated by optical lithography. It was found that the room-temperature noise figure of the InSb sensors was 6-10 mG/√Hz, which was an order of magnitude better than GaAs-AlGaAs two-dimensional electron gas sensors.Item Open Access Theoretical assessment of electronic transport in InN(Elsevier, 2004) Bulutay, C.; Ridley, B. K.Among the group-III nitrides, InN displays markedly unusual electronic transport characteristics due to its smaller effective mass, high peak velocity and high background electron concentration. First, a non-local empirical pseudopotential band structure of InN is obtained in the light of recent experimental and first-principles results. This is utilized within an ensemble Monte Carlo framework to illuminate the interesting transport properties. It is observed that InN has a peak velocity which is about 75% higher than that of GaN while at higher fields its saturation velocity is lower than that of GaN. Because of the strongly degenerate regime brought about by the high background electron concentration, the electron-electron interaction is also investigated, but its effect on the steady-state and transient velocity-field characteristics is shown to be negligible. Finally, hot phonon generation due to excessive polar optical phonon production in the electron scattering and relaxation processes is accounted for. The main findings are the appreciable reduction in the saturation drift velocity and the slower recovery from the velocity overshoot regime. The time evolution of the hot phonon distribution is analysed in detail and it is observed to be extremely anisotropic, predominantly along the electric force direction.