Browsing by Subject "Hysteresis measurements"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Graphene Nanoplatelets Embedded in HfO2 for MOS Memory(Electrochemical Society Inc., 2015) El-Atab, N.; Turgut, Berk Berkan; Okyay, Ali Kemal; Nayfeh, A.In this work, a MOS memory with graphene nanoplatelets charge trapping layer and a double layer high-κ Al2O3/HfO2 tunnel oxide is demonstrated. Using C-Vgate measurements, the memory showed a large memory window at low program/erase voltages. The analysis of the C-V characteristics shows that electrons are being stored in the graphene-nanoplatelets during the program operation. In addition, the retention characteristic of the memory is studied by plotting the hysteresis measurement vs. time. The measured excellent retention characteristic (28.8% charge loss in 10 years) is due to the large electron affinity of the graphene. The analysis of the plot of the energy band diagram of the MOS structure further proves its good retention characteristic. Finally, the results show that such graphene nanoplatelets are promising in future low-power non-volatile memory devices.Item Open Access Memory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structure(Wiley-VCH Verlag, 2015) El-Atab, N.; Rizk, A.; Tekcan, B.; Alkis, S.; Okyay, Ali Kemal; Nayfeh, A.A memory structure containing ultra-small 2-nm laser-synthesized silicon nanoparticles is demonstrated. The Si-nanoparticles are embedded between an atomic layer deposited high-κ dielectric Al2O3 layer and a sputtered SiO2 layer. A memory effect due to charging of the Si nanoparticles is observed using high frequency C-V measurements. The shift of the threshold voltage obtained from the hysteresis measurements is around 3.3V at 10/-10V gate voltage sweeping. The analysis of the energy band diagram of the memory structure and the negative shift of the programmed C-V curve indicate that holes are tunneling from p-type Si via Fowler-Nordheim tunneling and are being trapped in the Si nanoparticles. In addition, the structures show good endurance characteristic (>105program/erase cycles) and long retention time (>10 years), which make them promising for applications in non-volatile memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.