Browsing by Subject "High-speed optoelectronics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes(Institute of Electrical and Electronics Engineers, 1999-02) Gökkavas, M.; Onat, B. M.; Özbay, Ekmel; Ata, E. P.; Xu, J.; Towe, E.; Ünlü, M. S.Resonant cavity enhanced (RCE) photodiodes (PD's) are promising candidates for applications in optical communications and interconnects where high-speed high-efficiency photodetection is desirable. In RCE structures, the electrical properties of the photodetector remain mostly unchanged; however, the presence of the microcavity causes wavelength selectivity accompanied by a drastic increase of the optical field at the resonant wavelengths. The enhanced optical field allows to maintain a high efficiency for faster transit-time limited PD's with thinner absorption regions. The combination of an RCE detection scheme with Schottky PD's allows for the fabrication of high-performance photodetectors with relatively simple material structures and fabrication processes. In top-illuminated RCE Schottky PD's, a semitransparent Schottky contact can also serve as the top reflector of the resonant cavity. We present theoretical and experimental results on spectral and high-speed properties of GaAs-AlAs-InGaAs RCE Schottky PD's designed for 900-nm wavelength.Item Open Access High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications(IEEE, 2001) Gökkavas, M.; Dosunmu, O.; Ünlü, M. S.; Ulu, G.; Mirin, R. P.; Christensen, D. H.; Özbay, EkmelIn this letter, we report AlGaAs–GaAs p-i-n photodiodes with a 3-dB bandwidth in excess of 10 GHz for devices as large as 60- m diameter. Resonant cavity enhanced photodetection is employed to improve quantum efficiency, resulting in more than 90% peak quantum efficiency at 850 nm.