Browsing by Subject "High temperature"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Conversion of wooden structures into porous SiC with shape memory synthesis(2011) Dhiman, R.; Petrunin V.; Rana, K.; Morgen P.Synthesis of structured silicon carbide materials can be accomplished using wooden materials as the carbon source, with various silicon impregnation techniques. We have explored the low cost synthesis of SiC by impregnation of carbon from wood with SiO gas at high temperatures, which largely retains the structure of the starting wood (shape memory synthesis). Suitably structured, porous SiC could prove to be an important type of catalyst support material. Shape memory synthesis (SMS) has earlier been tried on high surface area carbon materials. Here we have made an extensive study of SMS on carbon structures obtained from different types of wood. © 2011 Elsevier Ltd and Techna Group S.r.l.Item Open Access Effect of processing options on ultra-low-loss lead-magnesium-niobium titanate thin films for high density capacitors(Elsevier, 2013) Chen W.; McCarthy, K.G.; O'Brien, S.; Çopuroǧlu, Mehmet; Cai, M.; Winfield, R.; Mathewson, A.This work studies the impact of annealing temperatures on PMNT (lead-magnesium niobate-lead titanate, Pb(Mg0.33Nb 0.67)0.65Ti0.35O3) thin films grown on a silicon substrate. The electrical properties of the thin films, such as dielectric constant and loss tangent, are shown to depend strongly on the annealing temperature, with the best electrical properties being achieved at the highest annealing temperature. It is seen that the perovskite phase is highest in the sample annealed at 750 C indicating that a relatively high temperature is necessary for complete transition of PMNT to the perovskite phase. The sample annealed at 400 C exhibits the lowest loss tangent of approximately 0.007 at a frequency of 1 MHz. © 2012 Elsevier B.V.Item Open Access Electrical conduction properties of Si δ-doped GaAs grown by MBE(2009) Yildiz, A.; Lisesivdin, S.B.; Altuntas H.; Kasap, M.; Ozcelik, S.The temperature dependent Hall effect and resistivity measurements of Si δ-doped GaAs are performed in a temperature range of 25-300 K. The temperature dependence of carrier concentration shows a characteristic minimum at about 200 K, which indicates a transition from the conduction band conduction to the impurity band conduction. The temperature dependence of the conductivity results are in agreement with terms due to conduction band conduction and localized state hopping conduction in the impurity band. It is found that the transport properties of Si δ-doped GaAs are mainly governed by the dislocation scattering mechanism at high temperatures. On the other hand, the conductivity follows the Mott variable range hopping conduction (VRH) at low temperatures in the studied structures. © 2009 Elsevier B.V. All rights reserved.Item Open Access Initial stages of Pt growth on Ge (001) studied by scanning tunneling microscopy and density functional theory(American Physical Society, 2004) Gurlu, O.; Zandvliet, H. J. W.; Poelsema, B.; Dag, S.; Çıracı, SalimWe have studied the initial stages of submonolayer Pt growth on the Ge(001). We have observed several stable and meta-stable adsorption configurations of Pt atoms at various temperatures. Calculations indicate relatively high binding energies of Pt atoms onto the Ge lattice, at different adsorption sites. Our results show that through-the-substrate bonding (concerted bonding) of two Pt atoms is more favored on Ge(001) surface then a direct Pt-Pt bond. Both our experiments and calculations indicate the breaking of Ge-Ge bonds on the surface in the vicinity of Pt adsorbates. We have also observed the spontaneous generation of 2 + 1 dimer vacancy defects at room temperature that cause the ejection of Ge atoms onto the surface. Finally we have studied the diffusion of Pt atoms into the bulk as a result of annealing and found out that they get trapped at subsurface sites.Item Open Access Nature of the Ti-Ba interactions on the BaO/TiO2/Al 2O3 NOx storage system(2009) Andonova, S. M.; Şentürk, G. S.; Kayhan, E.; Ozensoy, E.A ternary oxide-based NO* storage material in the form of BaOZTiO2Zy-Al2O3 was synthesized and characterized. Thermally induced structural changes occurring on the surfaces of the TiO2Zy-Al2O3 and BaOZ TiO 2Zy-Al2O3 systems were studied in a comparative manner within 300-1273 K via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and BET surface area analysis. The surface acidity of the studied oxide systems was also investigated via pyridine adsorption monitored by in-situ Fourier transform infrared (FTIR) spectroscopy. BaO/TiO2γ-Al 2O3 ternary oxide was synthesized by incorporating different loadings of (8-20 wt %) BaO onto the TiO2/γ Al 2O3 support material, which was originally prepared using the sol-gel method. In the TiO2Zy-Al2O3 binary oxide support material, anatase phase exhibited a relatively high thermal stability at T < 1073 K. The presence of TiO2 domains on the surface of the alumina particles was found to alter the surface acidity of alumina by providing new medium-strength Lewis acid sites. SEMZEDX results indicate that in the BaO/TiO2γ-Al2O3 system, TiO2 domains present a significant affinity toward BaO and/or Ba(NO3) 2 resulting in a strong Ti-Ba interaction and the formation of overlapping domains on the surface. The presence of TiO2 also leads to a decrease in the decomposition temperature of the Ba(N03) 2 phase with respect to the Ti-free Ba(N03) 2ZyAl2O3 system. Such a destabilization is likely to occur due to a weaker interaction between Ba(N03) 2 and y-Al203 domains in the ternary oxide as well as due to the change in the surface acidity in the presence of TiO 2. At relatively high temperatures (e.g., 873-1273 K) formation of complex structures in the form of BaTiO3, Ba1.23Al 2.46Ti5.54O16, BaTiO5, andor Ba x:AlyTizOn., were also observed. © 2009 American Chemical Society.Item Open Access Use of saccharides as solid-state precursors for the synthesis of carbon nanotubes(Materials Research Society, 2008) Küçükkayan, Gökçe; Kayacan, Serim; Baykal, Beril; Bengu, ErmanSaccharides, ranging from simple table sugar (sucrose) to lactulose were successfully used as solid-state precursors for the synthesis of multi-walled carbon nanotubes (MWCNT). Dehydrated saccharide residues mixed with catalyst powders were subjected to pyrolysis at high temperatures (up to 1300°C) under flowing Argon atmosphere. Pyrolysis products were investigated using TEM, SEM, Raman spectroscopy and EDS. Images taken using the S/TEM and bright field mode of TEM showed the presence of helical multi-walled carbon nanotube (H-MWCNT) and regular MWCNT formation. More than two or three catalyst particles were observed to be present inside the hollow core of some of the nanotubes synthesized, suggesting a high level of capillary activity inside the tubes during synthesis. © 2008 Materials Research Society.