Browsing by Subject "Gold nanoparticles"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Boosting the efficiency of organic solar cells via plasmonic gold nanoparticles and thiol functionalized conjugated polymer(Elsevier, 2022-11) Karakurt, O.; Alemdar, E.; Cevher, D.; Gulmez, S.; Taylan, Umut; Cevher, S. C.; Hizalan Ozsoy, G.; Ortac, Bulend; Cirpan, A.Conjugated polymers are promising low-cost, lightweight, and flexible candidates for scalable photovoltaic applications to establish decarbonized energy technologies. However, they possess deficiencies in terms of their lower charge mobility and exciton diffusion length compared to their inorganic counterparts, impeding the efficient charge extraction at high active layer thickness values. In this manner, active layer composition should be tuned to improve light harvesting enabling efficient charge transport. This work presents two new approaches to achieve higher photovoltaic performance for organic photovoltaic systems; thiol modification of the polymers for improved morphological features, and incorporation of ligand-free gold nanoparticles with surface plasmon absorption into the active layer to be stabilized by the covalent interaction with the thiol side groups of the polymers. To achieve this goal, a benzoxadiazole bearing polymer (POxT) and its bromine (POxT-Br) and thiol (POxT-SH) comprising derivatives were synthesized, their electrochemical, optical, photovoltaic, and morphological characterizations were performed. For photovoltaic characterizations, conventional device architecture of ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al was utilized, where the POxT-SH showed the highest JSC and PCE values, 6.52 mA/cm2 and 2.71%, respectively. Gold nanoparticles were synthesized via laser ablation method, and upon incorporation, the PCE value was boosted to 3.29%, with an increase of 21.4% compared to POxT-SH comprising organic solar cells.Item Open Access Catalytic activity of novel thermoplastic/cellulose-Au nanocomposites prepared by cryomilling(TUBITAK, 2020) Kwiczak-Yiğitbaşı, JoannaDue to environmental concerns, increasing attention has been focused on the application and preparation of biobased polymers and their blends. In this study, cellulose, the most spread biopolymer on Earth, was used in the preparation of novel cotton/polypropyleneAu and cotton/polyethylene-Au nanocomposites via a green mechanochemical approach. First, mechanoradicals were generated by ball milling of the cotton and thermoplastics under cryo conditions, and then, these radicals were used in the reduction of Au ions to Au nanoparticles (Au NPs). Nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The application of mechanochemistry in obtaining the cotton/thermoplastic blends allowed homogenous and fine blending of the samples and in addition, excluded the usage of toxic solvents. Since Au NPs exhibit a wide range of applications, e.g., in catalysis, cotton/thermoplastic-Au nanocomposites were used to catalyze the reduction reaction of 4-nitrophenol to 4-aminophenol, followed by UV-Vis spectroscopy. Finally, the hydrophobicity of the nanocomposites was alternated by tuning the blend composition. In the prepared nanocomposites, cotton and thermoplastics acted as very good supporting matrices for the Au NPs and provided satisfactory access to the NPs.Item Open Access Cucurbit[7]uril-capped hybrid conjugated oligomer-gold nanoparticles for combined photodynamic-photothermal therapy and cellular imaging(ACS, 2020) Özkan, Melis; Tunç, İ.; Midilli, Y.; Ortaç, Bülend; Tuncel, DönüşHerein, hybrid nanoparticles composed of a redemitting conjugated oligomer (COL) and gold nanoparticles (Au-NPs) were prepared through a one-pot synthetic method in which the oligomer acts as a reducing agent as well as a matrix to wrap the newly formed Au nanoparticles. These hybrid nanoparticles(COL-Au-NPs) exhibited photodynamic and photothermal activity against both Gram-positive and Gram-negative bacterial strains. They were also proven to possess high photostability and thermal reversibility. Dark cytotoxicity of COL-Au-NPs toward pathogens and mammalian breast cancer cells (MCF-7) reduced significantly upon complexation with cucurbit[7]uril while preserving their light-induced cytotoxic activity when irradiated with a 915 nm laser for photothermal therapy and white light for photodynamic therapy, respectively. Furthermore, these nanoparticles have cellular imaging capability because of their intrinsic fluorescence characteristics and can be used in image-guided therapy.Item Open Access Gold nanoparticle / polymer nanofibrous composites by laser ablation and electrospinning(Elsevier BV, 2011) Deniz, A. E.; Vural, H. A.; Ortaç, B.; Uyar, TamerPoly(vinylpyrolidone) (PVP) nanofibers incorporating gold nanoparticles (Au-NPs) were produced in combination with laser ablation and electrospinning techniques. The Au-NPs were directly synthesized in PVP solution by laser ablation and then, the electrospinning of PVP/Au-NPs solution was carried out for obtaining nanofibrous composites. The presence of Au-NPs in the PVP nanofibers was confirmed by SEM, TEM and EDX analyses. The SEM imaging elucidated that the electrospun PVP/Au-NPs nanofibers were bead-free having average fiber diameter of 810 ± 480 nm. The TEM imaging indicated that the Au-NPs were in spherical shape having diameters in the range of 5 to 20 nm and the Au-NPs were more or less dispersed homogeneously in the PVP nanofiber matrix. The FTIR study suggested the presence of molecular interactions between PVP matrix and the Au-NPs in the nanofibrous composites. The UV-Vis measurement confirmed the enhancement of the optical properties of the PVP/Au-NPs nanofibers in the solid state due to the surface plasma resonance effect of Au-NPs. © 2011 Elsevier B.V. All Rights Reserved.Item Open Access In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: A model study(Elsevier BV, 2010) Odaci, D.; Kahveci, M.U.; Sahkulubey, E.L.; Ozdemir, C.; Uyar, Tamer; Timur, S.; Yagci Y.In situ synthesis of poly(ethylene glycol) (PEG) hydrogels containing gold nanoparticles(AuNPs) and glucose oxidase (GOx) enzyme by photo-induced electron transfer process was reported here and applied in electrochemical glucose biosensing as the model system. Newly designed bionanocomposite matrix by simple one-step fabrication offered a good contact between the active site of the enzyme and AuNPs inside the network that caused the promotion in the electron transfer properties that was evidenced by cyclic voltammetryas well as higher amperometric biosensing responses in comparing with response signals obtained from the matrix without AuNPs. As well as some parameters important in the optimization studies such as optimum pH, enzyme loading and AuNP amount, the analytical characteristics of the biosensor (AuNP/GOx) were examined by the monitoring of chronoamperometric response due to the oxygen consumption through the enzymatic reaction at − 0.7 V under optimized conditions at sodium acetate buffer (50 mM, pH 4.0) and the linear graph was obtained in the range of 0.1–1.0 mM glucose. The detection limit (LOD) of the biosensor was calculated as 0.06 mM by using the signal to noise ratio of 3. Moreover, the presence of AuNPs was visualized by TEM. Finally, the biosensor was applied for glucose analysis for some beverages and obtained data were compared with HPLC as the reference method to test the possible matrix effect due to the nature of the samples.Item Open Access Investigation of electronic properties of ionic liquid electrochemical devices by X-ray photoelectron spectroscopy(2016-12) Camcı, MerveAttention towards electrochemical energy storage devices assembled with innovative solvent-free electrolytes ‘ionic liquids’ (ILs) has been progressively rising over the last two decades. In order to design a particular electrochemical device it becomes crucial to understand the structure of interfacial region and the electrical response of ILs. Accordingly, this thesis focuses on Xray Photoelectron Spectroscopic (XPS) investigations of electrochemical devices containing ILs, that is compatible with ultra high vacuum condition needed for XPS. Towards better understanding the fundamental aspects of certain electrochemical issues, electrochemical devices consisting of two metalelectrodes, which contains N,N – Diethyl -N- methyl -N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide, (DEME-TFSI) IL-electrolyte between them, have been investigated by XPS under external electrical stimuli control, as a novel analytical tool for elucidating; (i) charging/ discharging phenomena, (ii) electrical double layer (EDL) formation and (iii) electrochemical reaction products. In the first part, a co-planar electrochemical device, with two gold electrodes on porous polyethylene membrane (PEM) plus DEME-TFSI impregnated between the electrodes, has been studied using external DC bias, for recording the position dependent electrical potential variations. In addition, AC bias is used to harvest temporal behavior. For the AC bias a square wave excitation is used, for which two frequencies are adopted corresponding to slow (10 mHz) and fast (1 kHz) time scales, for probing the response of the system at infinite- and zero-time onset, respectively. In all cases XP spectra have been recorded at different lateral positions. As a result of these DC and AC applications a new understanding has surfaced. Accordingly, although at the metal-electrolyte interface the EDL formation is limited to lateral dimensions at the nanometer scale, its visualization through the analysis of the XPS-probed voltage transients can be extended to very large distances from the interface, in the millimeters scale. These responses have also been modeled using a simple equivalent circuit with two oppositely polarized electrodes and an ionic conducting medium in between. In the second part, re-arrangement of the DEME-TFSI’s ionic constituents at the Au electrode/IL-electrolyte interface has been monitored by the dynamic-XPS approach under application of electrical pulses in the form of a slow (1 mHz) triangular wave with an amplitude of 5V, while recording the intensity fluctuations of the two N1s peaks corresponding to the anionic and the cationic fragments. In the last part, the externally bias XPS analysis has been used for insitu and in-vacuo monitoring of anodically triggered electrochemical preparation and characterization of Au NPs in both a co-planar and also in a wire-plane electrode electrochemical geometries. The small sized Au NPs’ formation within the DEME-TFSI medium has been confirmed by the characteristic peak around 470 nm in the Visible spectrum and with the spherical and well-dispersed (~4 nm) particles in TEM images.Item Open Access Laser synthesized gold nanoparticles for high sensitive strain gauges(Elsevier, 2013-12-01) Burzhuev, S.; Dana, A.; Ortac, B.We demonstrate high strain sensitivity property of gold nanoparticle (Au-NP) thin films fabricated on flexible polydimethylsiloxane (PDMS) substrates. This behavior is attributed to quantum tunneling effect that is highly dependent on nanoparticle separation. Au-NPs were synthesized in water by nanosecond laser ablation method. The clean surface providing high tunneling decay constant, size of the Au-NPs and Au-NPs aggregate clusters offer advantages for high sensitivity strain sensor. We prepared Au-NPs films on flexible PDMS substrate by using hands-on drop-cast method. To obtain high gauge factor (g factor), we investigated the nanoparticles concentration on the substrate. Laser-generated Au-NPs films demonstrated g factor of ∼300 for higher than 0.22% strain and ∼80 for the strain lower than 0.22% strain, which is favorably comparable to reported sensitivities for strain sensors based on Au-NPs. Mechanical characterizations for the prolonged working durations suggest long term stability of the strain sensors. We discuss several models describing conductance of films in low and high strain regimes.Item Open Access Nanofibrous nanocomposites via electrospinning(2011) Deniz, Ali EkremIn recent years, numerous studies have been reported for fabrication of composite nanofibers from polymeric and inorganic materials by using electrospinning method. In the first part of this study, TiO2 and ZnO inorganic nanofibers were produced by electrospinning from their precursors by using polymeric carrier matrix and their photocatalytic activity of these metal oxide nanofibers were studied. Moreover, electrospun TiO2 nanofibers were crushed into short nanofibers (TiO2-SNF) and embedded in electrospun polymeric nanofiber matrixes such as poly(methyl methacrylate) (PMMA), polyacrylonitrile (PAN), polyethylene terephthalate (PET), polycarbonate (PC) and polyvinylidene fluoride (PVDF). Different weight loading of TiO2-SNF ranging from 2% to 8% (w/w, respect to polymer) incorporated into PVDF nanofibrous matrix was applied and the structural and morphological changes along with their photocatalytic activities were also examined. In the second part, metallic nanoparticles produced by laser ablation method were incorporated into nanofibrous polymeric matrix by using electrospinning technique. For example, gold (Au) and silver (Ag) nanoparticles (NPs) were produced from their metallic sources by laser ablation method directly in the polymer solutions. The NPs/polymer mixtures were electrospun and surface plasmon resonance effect of Au-NPs and Ag-NPs on optical properties of the nanofibers was studied. In addition, germanium nanocrystals produced by means of laser ablation were mixed with PVDF polymer solution and consequently electrospun into composite polymeric nanofiber matrix.Item Open Access Nonlinear nanomechanical mass spectrometry at the single-nanoparticle level(American Chemical Society, 2019) Yüksel, Mert; Orhan, Ezgi; Yanık, C.; Arı, Atakan B.; Demir, A.; Hanay, Mehmet SelimNanoelectromechanical systems (NEMS) have emerged as a promising technology for performing the mass spectrometry of large biomolecules and nanoparticles. As nanoscale objects land on NEMS sensors one by one, they induce resolvable shifts in the resonance frequency of the sensor proportional to their weight. The operational regime of NEMS sensors is often limited by the onset of nonlinearity, beyond which the highly sensitive schemes based on frequency tracking by phase-locked loops cannot be readily used. Here, we develop a measurement architecture with which to operate at the nonlinear regime and measure frequency shifts induced by analytes in a rapid and sensitive manner. We used this architecture to individually characterize the mass of gold nanoparticles and verified the results by performing independent measurements of the same nanoparticles based on linear mass sensing. Once the feasibility of the technique is established, we have obtained the mass spectrum of a 20 nm gold nanoparticle sample by individually recording about 500 single-particle events using two modes working sequentially in the nonlinear regime. The technique obtained here can be used for thin nanomechanical structures that possess a limited dynamic range.Item Open Access Single nanoparticle sensing with nanoelectromechanical resonators operating at nonlinear regime(2019-08) Yüksel, MertMachines working at the nanoscale dimensions o er an important technological opportunity for healthcare and biomedical screening. State-of-the-art nanomachines are usually operated at small displacements, since engineering tools for their control at large vibration amplitudes have so far been absent. Nanoelectromechanical Systems (NEMS) have emerged as a promising technology for performing the mass spectrometry of large biomolecules and nanoparticles. Nanoparticles constitute an important family in the nanotechnology toolbox, because they indicate potential pollutions early on, or can be designed to act as drug carriers for cancer therapy. As nanoscale objects land on NEMS sensor one by one, they induce resolvable shifts in the resonance frequency of the sensor proportional to their weight. The operational regime of NEMS sensors is often limited by the onset-of-nonlinearity, beyond which the highly sensitive schemes based on frequency tracking by phase-locked loops cannot be readily used. Here, we develop a measurement architecture to operate at the nonlinear regime and measure frequency shifts induced by analytes in a rapid and sensitive manner. We used this architecture to individually characterize the mass of gold nanoparticles and veri ed the results by performing independent measurements of the same nanoparticles based on linear mass sensing. Once the feasibility of the technique is established, we have obtained the mass spectrum of a 20 nm gold nanoparticle sample by individually recording about ve hundred single particle events using two modes working sequentially in the nonlinear regime. The technique obtained here can be used for thin nanomechanical structures which possess a limited dynamic range.Item Open Access X-ray-induced production of gold nanoparticles on a SiO2/Si system and in a poly(methyl methacrylate) matrix(American Chemical Society, 2005) Karadas, F.; Ertas, G.; Ozkaraoglu, E.; Süzer, ŞefikProlonged exposure to X-rays of HAuCl4 deposited from an aqueous solution onto a SiO2/Si substrate or into a poly(methyl methacrylate) (PMMA) matrix induces reduction of the Au3+ ions to Au0 and subsequent nucleation to gold nanoclusters as recorded by X-ray photoelectron spectroscopy. The corresponding major oxidation product is determined as chlorine {HAuCl4(ads) + X-rays -Au(ads) + (3/2)Cl 2(ada) + HCl(ads)}, which is initially adsorbed onto the surface but eventually diffuses out of the system into the vacuum. The reduced gold atoms aggregate (three-dimensionally) into gold nanoclusters as evidenced by the variation in the binding energy during X-ray exposure, which starts as 1.3 eV but approaches a value that is 0.5 eV higher than that of the bulk gold. The disappearance of the oxidation product (Cl2p signal) and the growth of the nanoclusters (related to the measured binding energy difference between the Si2p of the oxide and Au4f of the reduced gold) exhibit first-order kinetics which is approximately 3 times slower than the reduction of Au3+, indicating that both of the former processes are diffusion controlled. Similarly, gold ions incorporated into PMMA can also be reduced and aggregated to gold nanoclusters using 254 nm deep UV irradiation in air evidenced by UV - vis - NIR absorption spectrocopy.