Nanofibrous nanocomposites via electrospinning

Date

2011

Editor(s)

Advisor

Çıracı, Salim

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Bilkent University

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In recent years, numerous studies have been reported for fabrication of composite nanofibers from polymeric and inorganic materials by using electrospinning method. In the first part of this study, TiO2 and ZnO inorganic nanofibers were produced by electrospinning from their precursors by using polymeric carrier matrix and their photocatalytic activity of these metal oxide nanofibers were studied. Moreover, electrospun TiO2 nanofibers were crushed into short nanofibers (TiO2-SNF) and embedded in electrospun polymeric nanofiber matrixes such as poly(methyl methacrylate) (PMMA), polyacrylonitrile (PAN), polyethylene terephthalate (PET), polycarbonate (PC) and polyvinylidene fluoride (PVDF). Different weight loading of TiO2-SNF ranging from 2% to 8% (w/w, respect to polymer) incorporated into PVDF nanofibrous matrix was applied and the structural and morphological changes along with their photocatalytic activities were also examined. In the second part, metallic nanoparticles produced by laser ablation method were incorporated into nanofibrous polymeric matrix by using electrospinning technique. For example, gold (Au) and silver (Ag) nanoparticles (NPs) were produced from their metallic sources by laser ablation method directly in the polymer solutions. The NPs/polymer mixtures were electrospun and surface plasmon resonance effect of Au-NPs and Ag-NPs on optical properties of the nanofibers was studied. In addition, germanium nanocrystals produced by means of laser ablation were mixed with PVDF polymer solution and consequently electrospun into composite polymeric nanofiber matrix.

Course

Other identifiers

Book Title

Citation

item.page.isversionof