Browsing by Subject "Gold nanoparticle"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: A model study(Elsevier BV, 2010) Odaci, D.; Kahveci, M.U.; Sahkulubey, E.L.; Ozdemir, C.; Uyar, Tamer; Timur, S.; Yagci Y.In situ synthesis of poly(ethylene glycol) (PEG) hydrogels containing gold nanoparticles(AuNPs) and glucose oxidase (GOx) enzyme by photo-induced electron transfer process was reported here and applied in electrochemical glucose biosensing as the model system. Newly designed bionanocomposite matrix by simple one-step fabrication offered a good contact between the active site of the enzyme and AuNPs inside the network that caused the promotion in the electron transfer properties that was evidenced by cyclic voltammetryas well as higher amperometric biosensing responses in comparing with response signals obtained from the matrix without AuNPs. As well as some parameters important in the optimization studies such as optimum pH, enzyme loading and AuNP amount, the analytical characteristics of the biosensor (AuNP/GOx) were examined by the monitoring of chronoamperometric response due to the oxygen consumption through the enzymatic reaction at − 0.7 V under optimized conditions at sodium acetate buffer (50 mM, pH 4.0) and the linear graph was obtained in the range of 0.1–1.0 mM glucose. The detection limit (LOD) of the biosensor was calculated as 0.06 mM by using the signal to noise ratio of 3. Moreover, the presence of AuNPs was visualized by TEM. Finally, the biosensor was applied for glucose analysis for some beverages and obtained data were compared with HPLC as the reference method to test the possible matrix effect due to the nature of the samples.Item Open Access Inertial imaging with nanomechanical systems(Nature Publishing Group, 2015) Hanay, M. S.; Kelber, S. I.; O'Connell, C. D.; Mulvaney, P.; Sader, J. E.; Roukes, M. L.Mass sensing with nanoelectromechanical systems has advanced significantly during the last decade. With nanoelectromechanical systems sensors it is now possible to carry out ultrasensitive detection of gaseous analytes, to achieve atomic-scale mass resolution and to perform mass spectrometry on single proteins. Here, we demonstrate that the spatial distribution of mass within an individual analyte can be imaged - in real time and at the molecular scale - when it adsorbs onto a nanomechanical resonator. Each single-molecule adsorption event induces discrete, time-correlated perturbations to all modal frequencies of the device. We show that by continuously monitoring a multiplicity of vibrational modes, the spatial moments of mass distribution can be deduced for individual analytes, one-by-one, as they adsorb. We validate this method for inertial imaging, using both experimental measurements of multimode frequency shifts and numerical simulations, to analyse the inertial mass, position of adsorption and the size and shape of individual analytes. Unlike conventional imaging, the minimum analyte size detectable through nanomechanical inertial imaging is not limited by wavelength-dependent diffraction phenomena. Instead, frequency fluctuation processes determine the ultimate attainable resolution. Advanced nanoelectromechanical devices appear capable of resolving molecular-scale analytes.Item Open Access One-pot synthesis of hybrid core-shell nanoparticles for antibacterial photodynamic therapy(2019-07) Hadi, Seyed EhsanMultidrug resistance (MDR) in Escherichia coli (E. coli) has become a worrying issue that is not only increasingly observed in humans but also is widespread in veterinary medicine worldwide. Therefore, developing new and e ective alternatives to conventional antibiotics has become an imperative need. The idea of using photodynamic therapy (PDT) for bacterial eradication is a solution for the cases that the bacteria are resisting to conventional antibiotics. Although in these cases, PDT can be an option, PDT-killing efficiency might still not be sufficient, and some enhancements are necessary. Metal-enhanced singlet oxygen generation (ME1O2) is one of the ways to enhance the PDT-killing efficiency of the E. coli. Hybrid core-shell structures can serve conveniently for this purpose. These structures can combine the exible and tailorable features of polymers (shell) with the photophysical properties of plasmonic metals (core). In this work, using gold as a core and conjugated oligomer as a shell produced a novel hybrid core-shell nanoparticles which can enhance the singlet oxygen generation capacity and subsequently, improve the PDT-killing efficiency of the E. coli. In this structure, the shell is responsible for the spontaneous reduction of gold ions, forming gold nanoparticles and protecting them from the aggregation. With further investigation and optimization, the hybrid core-shell nanoparticles with the help of ME1O2 successfully improved the killing efficiency of E. coli bacteria by 40%.Item Open Access Preparation and characterization of polymer composites containing gold nanoparticles(2011) Yılmaz, EdaIn this study, light-assisted synthesis of gold nanoparticles in polymer films is demonstrated and characterization of gold nanoparticle-polymer composites using various techniques is shown. There are various methods introduced for the synthesis of gold nanoparticles in solution and their integration to the polymer films afterwards. However, synthesizing gold nanoparticles directly inside the polymer matrix is more advantageous for the production of polymer-nanoparticle composites. An advantage of synthesizing gold nanoparticles within polymer films is the opportunity of photo-patterning. Films having patterns made of regions with and without gold nanoparticles can be produced, using masks designed to cut off the radiation at desired places. Such patterned films were investigated with scanning electron microscope (SEM) and dark regions between irradiated regions and masked regions were observed. These dark regions are shown to be “ion depleted regions”, where gold ions diffuse through irradiated regions during the irradiation. These regions of about 10 m width, suggests a very large distance for gold ions to diffuse through a rigid matrix like Poly(methyl methacrylate)(PMMA), which is very interesting. Supporting evidence for the existence of these regions was obtained from fluorescence studies with Rhodamine 6G molecule and x-ray electron spectroscopy (XPS). The observations made through the formation of ion depleted regions can be used to estimate the diffusion constant of gold ions inside the PMMA matrix. Also the presence of ion depleted regions indicate the stability of photo-patterns created on the polymer film against smearing during light exposure after the production, by setting an upper limit to the critical feature size. During the characterization of gold nanoparticle-polymer composites, the electrical properties of PMMA with and without gold nanoparticles were investigated using charge resolved XPS, while applying external bias to the films with and without gold nanoparticles to probe the charging properties of the films. An enhancement of conductivity of PMMA films containing gold nanoparticles was observed using this technique. Additionally charge resolved XPS technique was also used to determine the charge storage characteristics of the polymer surfaces, which is important for the identification of charging mechanisms during contact and other electrification processes. It was shown that the PMMA surface is very susceptible to negative charging and even native negative charges on the PMMA surface can be observed prior to any treatment. Also when the surface is charged carbon and oxygen atoms of the carbonyl and methoxy groups of PMMA were observed to behave differently from the backbone of the polymer, which shows the chemical specificity of the charge accumulating spots on the surface.Item Open Access Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivity(American Chemical Society, 2017) Seker U.O.S.; Chen, A. Y.; Citorik, R. J.; Lu, T. K.Amyloids are highly ordered, hierarchal protein nanoassemblies. Functional amyloids in bacterial biofilms, such as Escherichia coli curli fibers, are formed by the polymerization of monomeric proteins secreted into the extracellular space. Curli is synthesized by living cells, is primarily composed of the major curlin subunit CsgA, and forms biological nanofibers with high aspect ratios. Here, we explore the application of curli fibers for nanotechnology by engineering curli to mediate tunable biological interfaces with inorganic materials and to controllably form gold nanoparticles and gold nanowires. Specifically, we used cell-synthesized curli fibers as templates for nucleating and growing gold nanoparticles and showed that nanoparticle size could be modulated as a function of curli fiber gold-binding affinity. Furthermore, we demonstrated that gold nanoparticles can be preseeded onto curli fibers and followed by gold enhancement to form nanowires. Using these two approaches, we created artificial cellular systems that integrate inorganic-organic materials to achieve tunable electrical conductivity. We envision that cell-synthesized amyloid nanofibers will be useful for interfacing abiotic and biotic systems to create living functional materials.