Browsing by Subject "Gibbs sampling"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Automatic detection of compound structures by joint selection of region groups from a hierarchical segmentation(Institute of Electrical and Electronics Engineers, 2016) Akçay, H. G.; Aksoy, S.A challenging problem in remote sensing image analysis is the detection of heterogeneous compound structures such as different types of residential, industrial, and agricultural areas that are composed of spatial arrangements of simple primitive objects such as buildings and trees. We describe a generic method for the modeling and detection of compound structures that involve arrangements of an unknown number of primitives in large scenes. The modeling process starts with a single example structure, considers the primitive objects as random variables, builds a contextual model of their arrangements using a Markov random field, and learns the parameters of this model via sampling from the corresponding maximum entropy distribution. The detection task is formulated as the selection of multiple subsets of candidate regions from a hierarchical segmentation where each set of selected regions constitutes an instance of the example compound structure. The combinatorial selection problem is solved by the joint sampling of groups of regions by maximizing the likelihood of their individual appearances and relative spatial arrangements. Experiments using very high spatial resolution images show that the proposed method can effectively localize an unknown number of instances of different compound structures that cannot be detected by using spectral and shape features alone.Item Open Access Automatic detection of compound structures by joint selection of region groups from multiple hierarchical segmentations(2016-09) Akçay, Hüseyin GökhanA challenging problem in remote sensing image interpretation is the detection of heterogeneous compound structures such as different types of residential, industrial, and agricultural areas that are comprised of spatial arrangements of simple primitive objects such as buildings and trees. We describe a generic method for the modeling and detection of compound structures that involve arrangements of unknown number of primitives appearing in different primitive object layers in large scenes. The modeling process starts with example structures, considers the primitive objects as random variables, builds a contextual model of their arrangements using a Markov random field, and learns the parameters of this model via sampling from the corresponding maximum entropy distribution. The detection task is reduced to the selection of multiple subsets of candidate regions from multiple hierarchical segmentations corresponding to different primitive object layers where each set of selected regions constitutes an instance of the example compound structures. The combinatorial selection problem is solved by joint sampling of groups of regions by maximizing the likelihood of their individual appearances and relative spatial arrangements under the model learned from the example structures of interest. Moreover, we incorporate linear equality and inequality constraints on the candidate regions to prevent the co-selection of redundant overlapping regions and to enforce a particular spatial layout that must be respected by the selected regions. The constrained selection problem is formulated as a linearly constrained quadratic program that is solved via a variant of the primal-dual algorithm called the Difference of Convex algorithm by rewriting the non-convex program as the difference of two convex programs. Extensive experiments using very high spatial resolution images show that the proposed method can provide good localization of unknown number of instances of different compound structures that cannot be detected by using spectral and shape features alone.Item Open Access Meal participation prediction with bayesian hierarchical models(2021-12) Kof, AleynaForecasting sales in the catering industry helps authorities to organize daily transactions efficiently to prevent both waste and business loss. In this study, we focused on predicting meal sales in Bilintur Catering Centre with the dataset which is collected through five academic years. To forecast the meal sales, we constructed two Bayesian hierarchical models. The first model does not differentiate effects of predictors in different academic years, while the second does. We derived the full conditional distributions and employed Gibbs sampling in an extensive MCMC study. We tested two models along with a benchmark multiple regression model on the held-out academic year. We concluded that multiple regression and first model provide more accurate results.