Meal participation prediction with bayesian hierarchical models

Date

2021-12

Editor(s)

Advisor

Dayanık, Savaş

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
21
views
26
downloads

Series

Abstract

Forecasting sales in the catering industry helps authorities to organize daily transactions efficiently to prevent both waste and business loss. In this study, we focused on predicting meal sales in Bilintur Catering Centre with the dataset which is collected through five academic years. To forecast the meal sales, we constructed two Bayesian hierarchical models. The first model does not differentiate effects of predictors in different academic years, while the second does. We derived the full conditional distributions and employed Gibbs sampling in an extensive MCMC study. We tested two models along with a benchmark multiple regression model on the held-out academic year. We concluded that multiple regression and first model provide more accurate results.

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)