Automatic detection of compound structures by joint selection of region groups from a hierarchical segmentation

Date

2016

Authors

Akçay, H. G.
Aksoy, S.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
16
downloads

Citation Stats

Series

Abstract

A challenging problem in remote sensing image analysis is the detection of heterogeneous compound structures such as different types of residential, industrial, and agricultural areas that are composed of spatial arrangements of simple primitive objects such as buildings and trees. We describe a generic method for the modeling and detection of compound structures that involve arrangements of an unknown number of primitives in large scenes. The modeling process starts with a single example structure, considers the primitive objects as random variables, builds a contextual model of their arrangements using a Markov random field, and learns the parameters of this model via sampling from the corresponding maximum entropy distribution. The detection task is formulated as the selection of multiple subsets of candidate regions from a hierarchical segmentation where each set of selected regions constitutes an instance of the example compound structure. The combinatorial selection problem is solved by the joint sampling of groups of regions by maximizing the likelihood of their individual appearances and relative spatial arrangements. Experiments using very high spatial resolution images show that the proposed method can effectively localize an unknown number of instances of different compound structures that cannot be detected by using spectral and shape features alone.

Source Title

IEEE Transactions on Geoscience and Remote Sensing

Publisher

Institute of Electrical and Electronics Engineers

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English