Browsing by Subject "Gas generators"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Activatable photosensitizers: agents for selective photodynamic therapy(Wiley-VCH Verlag, 2017) Li, X.; Kolemen, S.; Yoon, J.; Akkaya, E. U.Recent developments in the design of bifunctional and activatable photosensitizers rejuvenate the aging field of photodynamic sensitization and photodynamic therapy. While systematic studies have uncovered new dyes that can serve as potential photosensitizers, the most promising results have come from studies aimed at gaining precise control over the location and rate of cytotoxic singlet oxygen generation. As a consequence, higher selectivities and efficiencies in photodynamic treatment protocols are now within reach. This feature article highlights the variety of approaches that have been pursued to improve photodynamic therapy and to transform simple photosensitizers into smarter theranostic agents.Item Open Access A bifunctional photosensitizer for enhanced fractional photodynamic therapy: singlet oxygen generation in the presence and absence of light(Wiley-VCH Verlag, 2016) Turan, I. S.; Yildiz, D.; Turksoy, A.; Gunaydin, G.; Akkaya, E. U.The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self-limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2-pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2-pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2-pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell-culture studies validated this working principle in vitro.Item Open Access Cytotoxicity of multifunctional surfactant containing capped mesoporous silica nanoparticles(Royal Society of Chemistry, 2016) Yildirim, A.; Turkaydin, M.; Garipcan, B.; Bayındır, MehmetThis paper reports the synthesis of silica capped surfactant (cetyltrimethylammonium bromide; CTAB) and dye (Rose Bengal; RB) containing mesoporous silica nanoparticles (MSNs). Capping the pores of the surfactant containing MSNs with a thin silica layer decreased the immediate surfactant originated cytotoxicity of these particles without affecting their long term (3 days) cytotoxicity. Also, the silica capping process almost completely prevented the hemolytic activity of the surfactant containing MSNs. In addition, improved uptake of silica capped MSNs compared to the uncapped particles by cancer cells was demonstrated. The delayed cytotoxicity, low hemolytic activity, and better cellular uptake of the silica capped MSNs make them promising for the development of safe (i.e. with fewer side effects) yet efficient theranostic agents. These nanocarriers may release the loaded cytotoxic molecules (CTAB) mostly after being accumulated in the tumor site and cause so minimal damage to the normal tissues and blood components. In addition, the nanoscale confinement of RB molecules inside the pores of MSNs makes the particles brightly fluorescent. Furthermore, it was demonstrated that due to the singlet oxygen generation capability of the RB dye the silica capped MSNs can be also used for photodynamic therapy of cancer. © 2016 The Royal Society of Chemistry.Item Open Access Near-IR-triggered, remote-controlled release of metal ions: A novel strategy for caged ions(Wiley-VCH Verlag, 2014) Atilgan, A.; Eçik, E. T.; Guliyev, R.; Uyar, T. B.; Erbas-Cakmak, S.; Akkaya, E. U.A ligand incorporating a dithioethenyl moiety is cleaved into fragments which have a lower metal-ion affinity upon irradiation with low-energy red/near-IR light. The cleavage is a result of singlet oxygen generation which occurs on excitation of the photosensitizer modules. The method has many tunable factors that could make it a satisfactory caging strategy for metal ions.Item Open Access Synthesis and investigation of singlet oxygen production efficiency of photosensitizers based on meso-phenyl-2,5-thienylene linked porphyrin oligomers and polymers(Royal Society of Chemistry, 2015) Khan, R.; Idris, M.; Tuncel, D.Three new Zn(ii)-, oligo- and poly(2,5-thienylene)-linked porphyrins, bearing multiple triethylene glycol (TEG) groups, on all meso aryl positions were synthesized via Stille and Suzuki coupling reactions and their photophysical properties as well as singlet oxygen generation efficiencies have been investigated to elucidate the possibility of their use as a photosensitizer for photodynamic therapy (PDT) and photodynamic inactivation of bacteria. © The Royal Society of Chemistry 2015.Item Open Access Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy(2009) Ozlem, S.; Akkaya, E. U.A simple derivative of a well-known dye bodipy appears to be a satisfactory sensitizer for singlet oxygen. Moreover, the rate of singlet oxygen generation can be modulated by two cancer-related cellular parameters, sodium ion concentration and acidity. Singlet oxygen generation rate is maximal when sodium ions and an organic acid were added. The operation of this molecular automaton follows AND logic, which introduces an additional layer of selectivity in the photodynamic action of the reagent. It should also be noted that in this system sensing, computing and actuating functions are realized within a single molecule. Copyright © 2008 American Chemical Society.