Browsing by Subject "Electronic transport properties"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Determination of the in-plane effective mass and quantum lifetime of 2D electrons in AlGaN/GaN based HEMTs(2011) Celik O.; Tiras, E.; Ardali, S.; Lisesivdin, S.B.; Özbay, EkmelMagnetoresistance and Hall resistance measurements have been used to investigate the electronic transport properties of AlGaN/GaN based HEMTs. The Shubnikov-de Haas (SdH) oscillations from magnetoresistance, is obtained by fitting the nonoscillatory component to a polynomial of second degree, and then subtracting it from the raw experimental data. It is shown that only first subband is occupied with electrons. The two-dimensional (2D) carrier density and the Fermi energy with respect to subband energy (EF-E1) have been determined from the periods of the SdH oscillations. The in-plane effective mass (m*) and the quantum lifetime (τq) of electrons have been obtained from the temperature and magnetic field dependencies of the SdH amplitude, respectively. The in-plane effective mass of 2D electrons is in the range between 0.19 m0 and 0.22 m0. Our results for in-plane effective mass are in good agreement with those reported in the literature © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Effective mass of electron in monolayer graphene: Electron-phonon interaction(AIP Publishing LLC, 2013-01-25) Tiras, E.; Ardali, S.; Tiras, T.; Arslan, E.; Cakmakyapan, S.; Kazar, O.; Hassan, J.; Janzén, E.; Özbay, EkmelShubnikov-de Haas (SdH) and Hall effect measurements performed in a temperature range between 1.8 and 275 K, at an electric field up to 35 kV m -1 and magnetic fields up to 11 T, have been used to investigate the electronic transport properties of monolayer graphene on SiC substrate. The number of layers was determined by the use of the Raman spectroscopy. The carrier density and in-plane effective mass of electrons have been obtained from the periods and temperature dependencies of the amplitude of the SdH oscillations, respectively. The effective mass is in good agreement with the current results in the literature. The two-dimensional (2D) electron energy relaxations in monolayer graphene were also investigated experimentally. The electron temperature (Te) of hot electrons was obtained from the lattice temperature (TL) and the applied electric field dependencies of the amplitude of SdH oscillations. The experimental results for the electron temperature dependence of power loss indicate that the energy relaxation of electrons is due to acoustic phonon emission via mixed unscreened piezoelectric interaction and deformation-potential scattering.