Browsing by Subject "Electron gas"
Now showing 1 - 20 of 26
- Results Per Page
- Sort Options
Item Open Access Analysis of defect related optical transitions in biased AlGaN/GaN heterostructures(2010) Bengi, A.; Lisesivdin, S.B.; Kasap, M.; Mammadov, T.; Ozcelik, S.; Özbay, EkmelThe optical transitions in AlGaN/GaN heterostructures that are grown by metalorganic chemical vapor deposition (MOCVD) have been investigated in detail by using Hall and room temperature (RT) photoluminescence (PL) measurements. The Hall measurements show that there is two-dimensional electron gas (2DEG) conduction at the AlGaN/GaN heterointerface. PL measurements show that in addition to the characteristic near-band edge (BE) transition, there are blue (BL) and yellow luminescence (YL) bands, free-exciton transition (FE), and a neighboring emission band (NEB). To analyze these transitions in detail, the PL measurements were taken under bias where the applied electric field changed from 0 to 50 V/cm. Due to the applied electric field, band bending occurs and NEB separates into two different peaks as an ultraviolet luminescence (UVL) and Y4 band. Among these bands, only the yellow band is unaffected with the applied electric field. The luminescence intensity change of these bands with an electric field is investigated in detail. As a result, the most probable candidate of the intensity decrease with an increasing electric field is the reduction in the radiative lifetime. © 2010 Elsevier Ltd. All rights reserved.Item Open Access Analytic calculation of ground state properties of the 2d and 3d electron gas(2015-06) Katı, YağmurThe electron gas (2D and 3D) is a model which consists of interacting electrons moving in a uniform positive background. Its importance stems from the fact that a number of metals behave similarly, it provides the functional used in density functional theory, and that in 2D it can be experimentally realized. Understanding the behavior of this model is of fundamental importance. In this thesis we present an analysis of this model based on the Hypernetted Chain Method in 3D, and 2D. The HNC method is a variational method to calculate the ground state properties of an interacting system, by expressing the ground state energy as a functional of the radial distribution function. Minimizing the energy expression one obtains a zero energy Schr odinger equation for the square root of the radial distribution function. The potential in this equation can include the e ects of fermionic or bosonic exchange. We applied this method to charged boson and electron gas in 2D and 3D systems. On the basis of the results of this research, it can be concluded that we obtained very close correlation energy results compared to Monte Carlo, and FHNC results for the density range when rs is from 0 to 20. This extended range is important for solid state applications.Item Open Access Bell solitons in ultra-cold atomic Fermi gas(2013) Khan, A.; Panigrahi P.K.We demonstrate the existence of supersonic bell solitons in the Bardeen-Cooper-Schrieffer-Bose-Einstein condensate crossover regime. Starting from the extended Thomas-Fermi density functional theory of superfluid order parameter, a density transformation is used to map the hydrodynamic mean field equation to a Lienard-type equation. As a result, bell solitons are obtained as exact solutions, which is further verified by the numerical solution of the dynamical equation. The stability of the soliton is established and its behaviour in the entire crossover domain is obtained. It is found that, akin to the case of vortices, bell solitons yield highest contrast in the BEC regime. © 2013 IOP Publishing Ltd.Item Open Access Collective modes in a bilayer dipolar fermi gas and the dissipationless drag effect(Springer, 2013) Tanatar, BilalWe consider the collective modes of a bilayer dipolar Fermi system in which the particles interact via long range (∼1/r 3) interaction. Assuming that each layer has a background flow which varies little and that the dynamics of the superfluid near T=0 is the same as that of a normal fluid, we obtain the dispersion relations for the collective modes in the presence of background flow. Decomposing the background flow into two parts, the center-of-mass flow and counterflow, we focus on the properties of the counterflow. We first find an estimate of the change in the zero-point energy ΔE ZP due to counterflow for a unit area of bilayer. Combining this with the free energy F of the system and taking the partial derivatives with respect to background velocities in the layers, we determine the current densities which reveal the fact that current in one layer does not only depend on the velocity in the same layer but also on the velocity of the other layer. This is the drag effect and we calculate the drag coefficient.Item Open Access Compressibility of a two-dimensional electron gas in a parallel magnetic field(Elsevier B.V., 2007) Subaşi, A. L.; Tanatar, BilalThe thermodynamic compressibility of a two-dimensional electron system in the presence of an in-plane magnetic field is calculated. We use accurate correlation energy results from quantum Monte Carlo simulations to construct the ground state energy and obtain the critical magnetic field Bc required to fully spin polarize the system. Inverse compressibility as a function of density shows a kink-like behavior in the presence of an applied magnetic field, which can be identified as Bc. Our calculations suggest an alternative approach to transport measurements of determining full spin polarization.Item Open Access Correlation effects in a one-dimensional electron gas with short-range interaction(Pergamon Press, 1999) Demirel, E.; Tanatar, BilalWe study the correlation effects in a one-dimensional electron gas with repulsive delta-function interaction. The correlation effects are described by a local-field correction which takes into account the short-range correlations. We find that the ground state energy is in good agreement with the exact result up to intermediate coupling strengths, showing an improvement over the STLS approximation. The compressibility, the static structure factor and the pair-correlation function are also calculated within the present approximation.Item Open Access Current-Transport mechanisms in the AlInN/AlN/GaN single-channel and AlInN/AlN/GaN/AlN/GaN double-channel heterostructures(Elsevier, 2013) Arslan, E.; Turan, S.; Gökden, S.; Teke, A.; Özbay, EkmelCurrent-transport mechanisms were investigated in Schottky contacts on AlInN/AlN/GaN single channel (SC) and AlInN/AlN/GaN/AlN/GaN double channel (DC) heterostructures. A simple model was adapted to the current-transport mechanisms in DC heterostructure. In this model, two Schottky diodes are in series: one is a metal-semiconductor barrier layer (AIInN) Schottky diode and the other is an equivalent Schottky diode, which is due to the heterojunction between the AlN and GaN layer. Capacitance-voltage studies show the formation of a two-dimensional electron gas at the AlN/GaN interface in the SC and the first AlN/GaN interface from the substrate direction in the DC. In order to determine the current mechanisms for SC and DC heterostructures, we fit the analytical expressions given for the tunneling current to the experimental current-voltage data over a wide range of applied biases as well as at different temperatures. We observed a weak temperature dependence of the saturation current and a fairly small dependence on the temperature of the tunneling parameters in this temperature range. At both a low and medium forward-bias voltage values for Schottky contacts on AlInN/AlN/GaN/AlN/GaN DC and AlInN/AlN/GaN SC heterostructures, the data are consistent with electron tunneling to deep levels in the vicinity of mixed/screw dislocations in the temperature range of 80-420 K.Item Open Access Dimensional crossover in two-dimensional Bose-Fermi mixtures(Institute of Physics Publishing, 2010) Subaşi, A. L.; Sevinçli, S.; Vignolo, P.; Tanatar, BilalWe investigate the equilibrium properties of boson-fermion mixtures consisting of a Bose condensate and spin-polarized Fermi gas confined in a harmonic two-dimensional (2D) trap using mean-field theory. Boson-boson and boson-fermion coupling constants have a logarithmic dependence on the density because of the two-dimensional scattering events when the s-wave scattering lengths are on the order of mixture thickness. We show that this modifies the density profiles significantly. It is also shown that the dimensional crossover stabilizes the mixture against collapse and spatial demixing is observed for the case of a negative boson-fermion scattering length.Item Unknown Disorder and localization in the lowest Landau level in the presence of dilute point scatterers(Pergamon Press, 1999) Gedik, Z.; Bayındır, MehmetWe study the localization properties of a two-dimensional noninteracting electron gas in the presence of randomly distributed short-range scatterers in very high magnetic fields. We evaluate the participation number of the eigenstates obtained by exact diagonalization technique. At low impurity concentrations we obtain self-averaged values showing that all states, except those exactly at the Landau level, are localized with finite localization length. We conclude that in this dilute regime the localization length does not diverge. We also find that the maximum localization length increases exponentially with impurity concentration. Our calculations suggest that scaling behavior may be absent even for higher concentrations of scatterers.Item Open Access Drag effect in double-layer dipolar fermi gases(IOP, 2014) Tanatar, Bilal; Renklioğlu, Başak; Öktel, M. ÖzgürWe consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system.Item Open Access Dynamical correlations in Coulomb drag effect(Elsevier, 2003) Tanatar, Bilal; Davoudi, B.; Hu, B.Y.-K.Motivated by recent Coulomb drag experiments in pairs of low-density two-dimensional (2D) electron gases, we investigate the influence of correlation effects on the interlayer drag rate as a function of temperature. We use the self-consistent field method to calculate the intra and interlayer local-field factors Gij(q,T) which embody the short-range correlation effects. We calculate the transresistivity using the screened effective interlayer interactions that result from incorporating these local-field factors within various approximation schemes. Our results suggest that dynamic (frequency dependent) correlations play an important role in enhancing the Coulomb drag rate.Item Open Access Effect of disorder on the interacting fermi gases in a one-dimensional optical lattice(World Scientific Publishing Co., 2008) Xianlong, G.; Polini, M.; Tosi, M. P.; Tanatar, BilalInteracting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subjected to a harmonic trapping potential exhibit interesting compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a correlated random potential on these ground-state phases. We employ a lattice version of density-functional theory within the local-density approximation to determine the density distribution of fermions in these phases. The exchange-correlation potential is obtained from the Lieb-Wu exact solution of Fermi-Hubbard model. On-site disorder (with and without Gaussian correlations) and harmonic trap are treated as external potentials. We find that disorder has two main effects: (i) it destroys the local insulating regions if it is suffciently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the inverse compressibility at low density from quenching of percolation. For suffciently large disorder correlation length the enhancement in the inverse compressibility diminishes.Item Open Access Effective mass enhancement in two-dimensional electron systems: The role of interaction and disorder effects(Elsevier, 2004) Asgari, R.; Davoudi, B.; Tanatar, BilalRecent experiments on two-dimensional (2D) electron systems have found a sharp increase in the effective mass of electrons with decreasing electron density. In an effort to understand this behavior we employ the many-body theory to calculate the quasiparticle effective mass in 2D electron systems. Because the low density regime is explored in the experiments we use the GWγ approximation where the vertex correction γ describes the correlation effects to calculate the self-energy from which the effective mass is obtained. We find that the quasiparticle effective mass shows a sharp increase with decreasing electron density. Disorder effects due to charged impurity scattering plays a crucial role in density dependence of effective mass.Item Open Access Energy relaxation probed by weak antilocalization measurements in GaN heterostructures(2009) Cheng H.; Bıyıklı, Necmi; Xie J.; Kurdak Ç.; Morko̧ H.Energy relaxation and electron-phonon (e-p) interaction are investigated in wurtzite Al0.15Ga0.85 N/AlN/GaN and Al0.83 In0.17 N/AlN/GaN heterostructures with polarization induced two-dimensional electron gases in the Bloch-Grüneisen regime. Weak antilocalization (WAL) and Shubnikov-de Haas measurements were performed on gated Hall bar structures at temperatures down to 0.3 K. We used WAL as a thermometer to measure the electron temperature Te as a function of the dc bias current. We found that the power dissipated per electron, P e, was proportional to Te4 due to piezoelectric acoustic phonon emission by hot electrons. We calculated Pe as a function of Te without any adjustable parameters for both the static and the dynamic screening cases of piezoelectric e-p coupling. In the temperature range of this experiment, the static screening case was expected to be applicable; however, our data was in better agreement with the dynamic screening case. © 2009 American Institute of Physics.Item Open Access Heat transfer through dipolar coupling: Sympathetic cooling without contact(American Physical Society, 2016) Renklioglu, B.; Tanatar, Bilal; Oktel, M. Ö.We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modeled within the Euler-Lagrange Fermi-hypernetted-chain approximation. The random-phase approximation is used for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer arises due to the long-range dipole-dipole interactions. A simple thermal model is established to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms and molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process.Item Open Access High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures(2009) Bando, M.; Ohashi, T.; Dede, M.; Akram, R.; Oral, A.; Park, S.Y.; Shibasaki I.; Handa H.; Sandhu, A.Further diversification of Hall sensor technology requires development of materials with high electron mobility and an ultrathin conducting layer very close to the material's surface. Here, we describe the magnetoresistive properties of micro-Hall devices fabricated using InAlSb/InAsSb/InAlSb heterostructures where electrical conduction was confined to a 30 nm-InAsSb two-dimensional electron gas layer. The 300 K electron mobility and sheet carrier concentration were 36 500 cm2 V-1 s-1 and 2.5× 1011 cm-2, respectively. The maximum current-related sensitivity was 2 750 V A-1 T-1, which was about an order of magnitude greater than AlGaAs/InGaAs pseudomorphic heterostructures devices. Photolithography was used to fabricate 1 μm×1 μm Hall probes, which were installed into a scanning Hall probe microscope and used to image the surface of a hard disk. © 2009 American Institute of Physics.Item Open Access Imaging capability of pseudomorphic high electron mobility transistors, AlGaN/GaN, and Si micro-Hall probes for scanning Hall probe microscopy between 25 and 125 °c(American Vacuum Society, 2009) Akram, R.; Dede, M.; Oral, A.The authors present a comparative study on imaging capabilities of three different micro-Hall probe sensors fabricated from narrow and wide band gap semiconductors for scanning hall probe microscopy at variable temperatures. A novel method of quartz tuning fork atomic force microscopy feedback has been used which provides extremely simple operation in atmospheric pressures, high-vacuum, and variable-temperature environments and enables very high magnetic and reasonable topographic resolution to be achieved simultaneously. Micro-Hall probes were produced using optical lithography and reactive ion etching process. The active area of all different types of Hall probes were 1×1 μ m2. Electrical and magnetic characteristics show Hall coefficient, carrier concentration, and series resistance of the hall sensors to be 10 mG, 6.3× 1012 cm-2, and 12 k at 25 °C and 7 mG, 8.9× 1012 cm-2 and 24 k at 125 °C for AlGaNGaN two-dimensional electron gas (2DEG), 0.281 mG, 2.2× 1014 cm-2, and 139 k at 25 °C and 0.418 mG, 1.5× 1014 cm-2 and 155 k at 100 °C for Si and 5-10 mG, 6.25× 1012 cm-2, and 12 k at 25 °C for pseudomorphic high electron mobility transistors (PHEMT) 2DEG Hall probe. Scan of magnetic field and topography of hard disc sample at variable temperatures using all three kinds of probes are presented. The best low noise image was achieved at temperatures of 25, 100, and 125 °C for PHEMT, Si, and AlGaNGaN Hall probes, respectively. This upper limit on the working temperature can be associated with their band gaps and noise associated with thermal activation of carriers at high temperatures.Item Open Access Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap(American Physical Society, 2015) Ünal, F. N.; Hetényi, B.; Oktel, M. Ö.The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.Item Open Access Mobility limiting scattering mechanisms in nitride-based two-dimensional heterostructures with the InGaN channel(IOP Publishing, 2010-03-16) Gökden, S.; Tülek, R.; Teke, A.; Leach, J. H.; Fan, Q.; Xie, J.; Özgür, Ü.; Morkoç, H.; Lisesivdin, S. B.; Özbay, EkmelThe scattering mechanisms limiting the carrier mobility in AlInN/AlN/InGaN/GaN two-dimensional electron gas (2DEG) heterostructures were investigated and compared with devices without InGaN channel. Although it is expected that InGaN will lead to relatively higher electron mobilities than GaN, Hall mobilities were measured to be much lower for samples with InGaN channels as compared to GaN. To investigate these observations the major scattering processes including acoustic and optical phonons, ionized impurity, interface roughness, dislocation and alloy disorder were applied to the temperature-dependent mobility data. It was found that scattering due mainly to interface roughness limits the electron mobility at low and intermediate temperatures for samples having InGaN channels. The room temperature electron mobilities which were determined by a combination of both optical phonon and interface roughness scattering were measured between 630 and 910 cm2 (V s)-1 with corresponding sheet carrier densities of 2.3-1.3 × 1013 cm-2. On the other hand, electron mobilities were mainly limited by intrinsic scattering processes such as acoustic and optical phonons over the whole temperature range for Al0.82In 0.18N/AlN/GaN and Al0.3Ga0.7N/AlN/GaN heterostructures where the room temperature electron mobilities were found to be 1630 and 1573 cm2 (V s)-1 with corresponding sheet carrier densities of 1.3 and 1.1 × 1013 cm-2, respectively. By these analyses, it could be concluded that the interfaces of HEMT structures with the InGaN channel layer are not as good as that of a conventional GaN channel where either AlGaN or AlInN barriers are used. It could also be pointed out that as the In content in the AlInN barrier layer increases the interface becomes smoother resulted in higher electron mobility.Item Open Access Nano and micro Hall-effect sensors for room-temperature scanning hall probe microscopy(Elsevier, 2004) Sandhu, A.; Okamoto, A.; Shibasaki, I.; Oral, AhmetGaAs/AlGaAs two-dimensional electron gas (GaAs-2DEG) Hall probes are impractical for sub-micron room-temperature scanning Hall microscopy (RT-SHPM), due to surface depletion effects that limit the Hall driving current and magnetic sensitivity (Bmin). Nano and micro Hall-effect sensors were fabricated using Bi and InSb thin films and shown to be practical alternatives to GaAs-2DEG probes for high resolution RT-SHPM. The GaAs-2DEG and InSb probes were fabricated using photolithography and the Bi probes by optical and focused ion beam lithography. Surface depletion effects limited the minimum feature size of GaAs-2DEG probes to ∼1.5 μm2 with a maximum drive current Imax of ∼3 μA and Bmin∼0.2 G/Hz. The B min of 1.5 μm2 InSb Hall probes was 6×10 -3 G/Hz at Imax of 100 μA. Further, 200 nm×200 nm Bi probes yielded good RT-SHPM images of garnet films, with Imax and sensitivity of 40 μA and ∼0.80 G/Hz, respectively.