Browsing by Subject "DNA structure"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA(Springer, 2014) Ozdemir, A.; Gursacli, R. T.; Tekinay, T.The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54x104 M -1. FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations. © 2014 Springer Science+Business Media.Item Open Access Robustness of massively parallel sequencing platforms(Public Library of Science, 2015) Kavak P.; Yüksel, B.; Aksu, S.; Kulekci, M.O.; Güngör, T.; Hach F.; Şahinalp, S.C.; Alkan, C.; Saʇiroʇlu, M.Ş.The improvements in high throughput sequencing technologies (HTS) made clinical sequencing projects such as ClinSeq and Genomics England feasible. Although there are significant improvements in accuracy and reproducibility of HTS based analyses, the usability of these types of data for diagnostic and prognostic applications necessitates a near perfect data generation. To assess the usability of a widely used HTS platform for accurate and reproducible clinical applications in terms of robustness, we generated whole genome shotgun (WGS) sequence data from the genomes of two human individuals in two different genome sequencing centers. After analyzing the data to characterize SNPs and indels using the same tools (BWA, SAMtools, and GATK), we observed significant number of discrepancies in the call sets. As expected, the most of the disagreements between the call sets were found within genomic regions containing common repeats and segmental duplications, albeit only a small fraction of the discordant variants were within the exons and other functionally relevant regions such as promoters. We conclude that although HTS platforms are sufficiently powerful for providing data for first-pass clinical tests, the variant predictions still need to be confirmed using orthogonal methods before using in clinical applications. © 2015 Kavak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Item Open Access Spectroscopic evaluation of DNA–borate Interactions(Humana Press Inc., 2015) Ozdemir, A.; Sarioglu O. F.; Tekinay, T.We describe the binding characteristics of two natural borates (colemanite and ulexite) to calf thymus DNA by UV–vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and a competitive DNA binding assay. Our results suggest that colemanite and ulexite interact with calf thymus DNA under a non-intercalative mode of binding and do not alter the secondary structure of the DNA helix. The FT-IR spectroscopy results indicate that the two borates might interact with DNA through sugar-phosphate backbone binding. © 2015, Springer Science+Business Media New York.