Robustness of massively parallel sequencing platforms

Date

2015

Authors

Kavak P.
Yüksel, B.
Aksu, S.
Kulekci, M.O.
Güngör, T.
Hach F.
Şahinalp, S.C.
Alkan, C.
Saʇiroʇlu, M.Ş.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
11
downloads

Citation Stats

Series

Abstract

The improvements in high throughput sequencing technologies (HTS) made clinical sequencing projects such as ClinSeq and Genomics England feasible. Although there are significant improvements in accuracy and reproducibility of HTS based analyses, the usability of these types of data for diagnostic and prognostic applications necessitates a near perfect data generation. To assess the usability of a widely used HTS platform for accurate and reproducible clinical applications in terms of robustness, we generated whole genome shotgun (WGS) sequence data from the genomes of two human individuals in two different genome sequencing centers. After analyzing the data to characterize SNPs and indels using the same tools (BWA, SAMtools, and GATK), we observed significant number of discrepancies in the call sets. As expected, the most of the disagreements between the call sets were found within genomic regions containing common repeats and segmental duplications, albeit only a small fraction of the discordant variants were within the exons and other functionally relevant regions such as promoters. We conclude that although HTS platforms are sufficiently powerful for providing data for first-pass clinical tests, the variant predictions still need to be confirmed using orthogonal methods before using in clinical applications. © 2015 Kavak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Source Title

PLoS ONE

Publisher

Public Library of Science

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English