BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Convex-optimization"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High performance 3D CMP design with stacked hybrid memory architecture in the dark silicon era using a convex optimization model
    (IEEE, 2016-05) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.
    In this article, we present a convex optimization model to design a stacked hybrid memory system to improve performance and reduce energy consumption of the chip-multiprocessor (CMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and efficiently maps applications/threads on cores in the core layer. Power consumption that is the main challenge in the dark silicon era is represented as a power constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D CMP. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D CMP compared to the Baseline memory design. © 2016 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A high-performance hybrid memory architecture for embedded CMPs using a convex optimization model
    (IEEE, 2015-11) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.
    In this article, we present a convex optimization model to design a stacked hybrid memory system for 3D embedded chip-multiprocessors (eCMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and maps applications/threads on cores in the core layer effectively. The detailed proposed model satisfies the power constraint which is the main challenge of dark-silicon era. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D eCMP compared to the Baseline memory design. © 2015 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback