BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Chip multiprocessors"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Adaptive thread scheduling in chip multiprocessors
    (Springer, 2019) Aktürk, İ.; Öztürk, Özcan
    The full potential of chip multiprocessors remains unexploited due to architecture oblivious thread schedulers employed in operating systems. We introduce an adaptive cache-hierarchy-aware scheduler that tries to schedule threads in a way that inter-thread contention is minimized. A novel multi-metric scoring scheme is used which specifies L1 cache access characteristics of threads. Scheduling decisions are made based on these multi-metric scores of threads.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Compiler directed network-on-chip reliability enhancement for chip multiprocessors
    (Association for Computing Machinery, 2010-04) Ozturk, O.; Kandemir, M.; Irwin, M. J.; Narayanan, S.H. K.
    Chip multiprocessors (CMPs) are expected to be the building blocks for future computer systems. While architecting these emerging CMPs is a challenging problem on its own, programming them is even more challenging. As the number of cores accommodated in chip multiprocessors increases, network-on-chip (NoC) type communication fabrics are expected to replace traditional point-to-point buses. Most of the prior software related work so far targeting CMPs focus on performance and power aspects. However, as technology scales, components of a CMP are being increasingly exposed to both transient and permanent hardware failures. This paper presents and evaluates a compiler-directed power-performance aware reliability enhancement scheme for network-on-chip (NoC) based chip multiprocessors (CMPs). The proposed scheme improves on-chip communication reliability by duplicating messages traveling across CMP nodes such that, for each original message, its duplicate uses a different set of communication links as much as possible (to satisfy performance constraint). In addition, our approach tries to reuse communication links across the different phases of the program to maximize link shutdown opportunities for the NoC (to satisfy power constraint). Our results show that the proposed approach is very effective in improving on-chip network reliability, without causing excessive power or performance degradation. In our experiments, we also evaluate the performance oriented and energy oriented versions of our compiler-directed reliability enhancement scheme, and compare it to two pure hardware based fault tolerant routing schemes. © 2010 ACM.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High performance 3D CMP design with stacked hybrid memory architecture in the dark silicon era using a convex optimization model
    (IEEE, 2016-05) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.
    In this article, we present a convex optimization model to design a stacked hybrid memory system to improve performance and reduce energy consumption of the chip-multiprocessor (CMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and efficiently maps applications/threads on cores in the core layer. Power consumption that is the main challenge in the dark silicon era is represented as a power constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D CMP. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D CMP compared to the Baseline memory design. © 2016 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Improving chip multiprocessor reliability through code replication
    (Pergamon Press, 2010) Ozturk, O.
    Chip multiprocessors (CMPs) are promising candidates for the next generation computing platforms to utilize large numbers of gates and reduce the effects of high interconnect delays. One of the key challenges in CMP design is to balance out the often-conflicting demands. Specifically, for today's image/video applications and systems, power consumption, memory space occupancy, area cost, and reliability are as important as performance. Therefore, a compilation framework for CMPs should consider multiple factors during the optimization process. Motivated by this observation, this paper addresses the energy-aware reliability support for the CMP architectures, targeting in particular at array-intensive image/video applications. There are two main goals behind our compiler approach. First, we want to minimize the energy wasted in executing replicas when there is no error during execution (which should be the most frequent case in practice). Second, we want to minimize the time to recover (through the replicas) from an error when it occurs. This approach has been implemented and tested using four parallel array-based applications from the image/video processing domain. Our experimental evaluation indicates that the proposed approach saves significant energy over the case when all the replicas are run under the highest voltage/frequency level, without sacrificing any reliability over the latter. © 2009 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimization-based power and thermal management for dark silicon aware 3D chip multiprocessors using heterogeneous cache hierarchy
    (Elsevier BV, 2017) Asad, A.; Ozturk, O.; Fathy, M.; Jahed-Motlagh, M. R.
    Management of a problem recently known as “dark silicon” is a new challenge in multicore designs. Prior innovative studies have addressed the dark silicon problem in the fields of power-efficient core design. However, addressing dark silicon challenges in uncore component designs such as cache hierarchy, on-chip interconnect etc. that consume significant portion of the on-chip power consumption is largely unexplored. In this paper, for the first time, we propose an integrated approach which considers the impact of power consumption of core and uncore components simultaneously to improve multi/many-core performance in the dark silicon era. The proposed approach dynamically (1) predicts the changing program behavior on each core; (2) re-determines frequency/voltage, cache capacity and technology in each level of the cache hierarchy based on the program's scalability in order to satisfy the power and temperature constraints. In the proposed architecture, for future chip-multiprocessors (CMPs), we exploit emerging technologies such as non-volatile memories (NVMs) and 3D techniques to combat dark silicon. Also, for the first time, we propose a detailed power model which is useful for future dark silicon CMPs power modeling. Experimental results on SPEC 2000/2006 benchmarks show that the proposed method improves throughput by about 54.3% and energy-delay product by about 61% on average, respectively, in comparison with the conventional CMP architecture with homogenous cache system. (A preliminary short version of this work was presented in the 18th Euromicro Conference on Digital System Design (DSD), 2015.) © 2017 Elsevier B.V.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback