Browsing by Subject "Cell proliferation"
Now showing 1 - 20 of 20
- Results Per Page
- Sort Options
Item Open Access 15-Lipoxygenase-1 re-expression in colorectal cancer alters endothelial cell features through enhanced expression of TSP-1 and ICAM-1(Elsevier, 2017-11) Tunçer, S.; Keşküş, A. G.; Çolakoğlu, M.; Çimen, I.; Yener, C.; Konu, Ö.; Banerjee, S.15-lipoxygenase-1 (15-LOX-1) oxygenates linoleic acid to 13(S)-hydroxyoctadecadienoic acid (HODE). The enzyme is widely suppressed in different cancers and its re-expression has tumor suppressive effects. 15-LOX-1 has been shown to inhibit neoangiogenesis in colorectal cancer (CRC); in the present study we confirm this phenomenon and describe the mechanistic basis. We show that re-expression of 15-LOX-1 in CRC cell lines resulted in decreased transcriptional activity of HIF1α and reduced the expression and secretion of VEGF in both normoxic and hypoxic conditions. Conditioned medium (CM) was obtained from CRC or prostate cancer cell lines re-expressing 15-LOX-1 (15-LOX-1CM). 15-LOX-1CM treated aortic rings from 6-week old C57BL/6 mice showed significantly less vessel sprouting and more organized structure of vascular network. Human umbilical vein endothelial cells (HUVECs) incubated with 15-LOX-1CM showed reduced motility, enhanced expression of intercellular cell adhesion molecule (ICAM-1) and reduced tube formation but no change in proliferation or cell-cycle distribution. HUVECs incubated with 13(S)-HODE partially phenocopied the effects of 15-LOX-1CM, i.e., showed reduced motility and enhanced expression of ICAM-1, but did not reduce tube formation, implying the importance of additional factors. Therefore, a Proteome Profiler Angiogenesis Array was carried out, which showed that Thrombospondin-1 (TSP-1), a matrix glycoprotein known to strongly inhibit neovascularization, was expressed significantly more in HUVECs incubated with 15-LOX-1CM. TSP-1 blockage in HUVECs reduced the expression of ICAM-1 and enhanced cell motility, thereby providing a mechanism for reduced angiogenesis. The anti-angiogenic effects of 15-LOX-1 through enhanced expressions of ICAM-1 and TSP-1 are novel findings and should be explored further to develop therapeutic options.Item Open Access Cancer cell Cytotoxicities of 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl) piperazine derivatives(M D P I AG, 2012) Yarim, M.; Koksal, M.; Durmaz, I.; Atalay, R.A series of novel 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl)piperazine derivatives 5a-g was designed by a nucleophilic substitution reaction of 1-(4-chlorobenzhydryl)piperazine with various benzoyl chlorides and characterized by elemental analyses, IR and 1H nuclear magnetic resonance spectra. Cytotoxicity of the compounds was demonstrated on cancer cell lines from liver (HUH7, FOCUS, MAHLAVU, HEPG2, HEP3B), breast (MCF7, BT20, T47D, CAMA-1), colon (HCT-116), gastric (KATO-3) and endometrial (MFE-296) cancer cell lines. Time-dependent cytotoxicity analysis of compound 5a indicated the long-term in situ stability of this compound. All compounds showed significant cell growth inhibitory activity on the selected cancer cell lines. © 2012 by the authors; licensee MDPI, Basel, Switzerland.Item Open Access Contact guidance enhances the quality of a tissue engineered corneal stroma(John Wiley & Sons, Inc., 2008) Vrana, E.; Builles, N.; Hindie, M.; Damour O.; Aydınlı, Atilla; Hasirci, V.Corneal stroma is a very complex structure, composed of 200 lamellae of oriented collagen fibers. This highly complex nature of cornea is known to be important for its transparency and mechanical integrity. Thus, an artificial cornea design has to take into account this complex structure. In this study, behavior of human corneal keratocytes on collagen films patterned with parallel channels was investigated. Keratocytes proliferated well on films and reached confluency after 7 days in the incubation medium. Nearly all of the cells responded to the patterns and were aligned in contrast to the cells on unpatterned surfaces. Collagen type I and keratan sulfate secreted by keratocytes on patterned films appeared to be aligned in the direction of the patterns. The films showed an intermediate degradation over the course of a month. On the whole, transparency of the films increased with degradation and decreased by the presence of the cells. The decrease was, however, low and transparency level was maintained on the patterned films while on the unpatterned films a sharp decrease in transparency was followed by an improvement. This was due to the more organized distribution of cells and the oriented secretion of extracellular matrix molecules on patterned collagen films. Thus, these results suggest that application of contact guidance in cornea tissue engineering may facilitate the remodeling process, hence decrease the rehabilitation period.Item Open Access Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii(2012) Cakmak, T.; Angun P.; Demiray, Y.E.; Ozkan, A.D.; Elibol, Z.; Tekinay, T.Biodiesel production from microalgae is a promising approach for energy production; however, high cost of its process limits the use of microalgal biodiesel. Increasing the levels of triacylglycerol (TAG) levels, which is used as a biodiesel feedstock, in microalgae has been achieved mainly by nitrogen starvation. In this study, we compared effects of sulfur (S) and nitrogen (N) starvation on TAG accumulation and related parameters in wild-type Chlamydomonas reinhardtii CC-124 mt(-) and CC-125 mt(+) strains. Cell division was interrupted, protein and chlorophyll levels rapidly declined while cell volume, total neutral lipid, carotenoid, and carbohydrate content increased in response to nutrient starvation. Cytosolic lipid droplets in microalgae under nutrient starvation were monitored by three-dimensional confocal laser imaging of live cells. Infrared spectroscopy results showed that relative TAG, oligosaccharide and polysaccharide levels increased rapidly in response to nutrient starvation, especially S starvation. Both strains exhibited similar levels of regulation responses under mineral deficiency, however, the degree of their responses were significantly different, which emphasizes the importance of mating type on the physiological response of algae. Neutral lipid, TAG, and carbohydrate levels reached their peak values following 4 days of N or S starvation. Therefore, 4 days of N or S starvation provides an excellent way of increasing TAG content. Although increase in these parameters was followed by a subsequent decline in N-starved strains after 4 days, this decline was not observed in S-starved ones, which shows that S starvation is a better way of increasing TAG production of C. reinhardtii than N starvation. © 2012 Wiley Periodicals, Inc.Item Open Access Ectopic expression of RET results in microphthalmia and tumors in the retinal pigment epithelium(1999) Schmidt, A.; Tief, K.; Yavuzer, U.; Beermann, F.The retinal pigment epithelium (RPE) is essential for eye development by interacting with the overlaying neuroepithelium. Regulatory sequences of the gene encoding for tyrosinase-related protein 1 (TRP-1), linked to the lacZ reporter gene, lead to strong and specific β-galactosidase expression in the RPE. We asked how the oncogene ret would affect this epithelial cell type during mouse development. We used the TRP-1 promoter to express ret in the developing RPE, and obtained transgenic mouse lines, which showed mild to severe microphthalmia. During development, the RPE changed to a stratified epithelium with reduced or absent pigmentation from E10.5 onward. In addition, proliferation of RPE cells and tumor formation were observed from E12.5 onward. These early events prevent closure of choroid fissure and lead to microphthalmia and secondary malformations after birth. We conclude that ret transgene expression in the RPE prevents normal differentiation of this epithelial layer and induces proliferation and tumor formation. The appearance of the microphthalmic phenotype underlines the requirement of a normally developed RPE for eye development.Item Open Access Effects of aging and short-term dietary restriction on neurogenesis and cellular senescence in the zebrafish (Danio Reio) brain(2016-09) Erbaba, BegünCurrently we know from rodent and fish studies that adult neuron generation is reduced but still continues in old animals with a dynamic change throughout aging. This process occurs mainly in hippocampal region, which is thought to be analogous to a region in telencephalon of the zebrafish brain. Changes in this neuron turnover are thought to be one contributing factor to cognitive change occuring with advanced age. Since we know that external factors can affect the process of neurogenesis, and as previous studies showed, dietary restriction (DR) extends life span; here, we hypothesized that DR should also alleviate several age associated alterations. In order to test this, we applied a 10-week feeding regimen to young (8-9 months) and old (26-32.5 months) male and female fish. We had two dietary regimen groups, one fed Ad libitum and one fed with a DR that was a pattern of every-other-day feeding, which is a widely accepted method of DR. A total of 124 animals were used in this study. As a result, a significant loss of body weight in both young and old DR groups was observed without an effect on body lengths. To be able to label actively dividing cells we used Bromodeoxyuridine (BrdU), which is a thymidine analog. It is injected into the fish intraperitoneally prior to euthanasia. Four hours later the brains were dissected and fixed for sectioning. We obtained cross-sectional slices of 50 m thickness with a vibratome, performed immunostaining with antibodies against BrdU, NeuN (neuronal marker), HuC (neuronal marker); and visualized the brain sections with confocal microscopy forming 3D reconstructed pictures. We counted the BrdU positive cells in all brain slices, forming a regional map of the telencephalic region of zebrafish brain, in which we documented the specific regions where the adult neurogenesis dominates the most and least. Our results confirmed that there are more BrdU positive cells in young animals than olds, and that age is correlated with an increased senescence associated fi-galactosidase (SA-fi-gal) activity, along with shortened telomere lengths. The 10-week diet was not found to be creating a significant change in cell proliferation rates, cellular senescence, or the differentiation pattern of glial cells. However, it was demonstrated to have a shortening effect on telomere lengths. Our data suggest that the potential effects of DR could be related to telomere regulation. Therefore, in order to detect differentially expressed genes that could be related to this mechanism between the groups, we performed microarray analysis with differing DR regimens. Initial data indicated no significant effects of a 4-week diet on gene expression differences among aged fish. Further analysis of the different periods of DR will be performed. Taken together, the effects of age are more robust than a short-term DR.Item Open Access Expression of IFITM1 in chronic myeloid leukemia patients(Elsevier, 2005) Akyerli, C. B.; Beksac, M.; Holko, M.; Frevel, M.; Dalva, K.; Özbek, U.; Soydan, E.; Özcan, M.; Özet, G.; İlhan, O.; Gürman, G.; Akan, H.; Williams, B. R. G.; Özçelik, T.We investigated the peripheral blood gene expression profile of interferon induced transmembrane protein 1 (IFITM1) in sixty chronic myeloid leukemia (CML) patients classified according to new prognostic score (NPS). IFITM1 is a component of a multimeric complex involved in the trunsduction of antiproliferative and cell adhesion signals. Expression level of IFITM1 was found significantly different between the high- and low-risk groups (P = 9.7976 × 10-11) by real-time reverse transcription polymerase chain reaction (RT-PCR). Higher IFITM1 expression correlated with improved survival (P = 0.01). These results indicate that IFITM1 expression profiling could be used for molecular classification of CML, which may also predict survival.Item Open Access Functionally conserved effects of rapamycin exposure on zebrafish(Spandidos Publications, 2016-03) Sucularli, C.; Shehwana, H.; Kuscu, C.; Dungul, D. C.; Ozdag, H.; Konu, O.Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well-known anti-cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta-analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose-dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin-modulated functional pathways between zebrafish and mice, in addition to the dose-dependent growth curves of zebrafish embryos upon rapamycin exposure.Item Open Access Gemcitabine integrated nano-prodrug carrier system(American Chemical Society, 2017) Hamsici, S.; Ekiz, M. S.; Ciftci, G. C.; Tekinay, A. B.; Güler, Mustafa O.Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.Item Open Access Identification of novel neutralizing single-chain antibodies against vascular endothelial growth factor receptor 2(2011) Erdag, B.; Koray Balcioglu, B.; Ozdemir Bahadir, A.; Serhatli, M.; Kacar O.; Bahar, A.; Seker, U.O.S.; Akgun, E.; Ozkan, A.; Kilic, T.; Tamerler, C.; Baysal, K.Human vascular endothelial growth factor (VEGF) and its receptor (VEGFR-2/kinase domain receptor [KDR]) play a crucial role in angiogenesis, which makes the VEGFR-2 signaling pathway a major target for therapeutic applications. In this study, a single-chain antibody phage display library was constructed from spleen cells of mice immunized with recombinant human soluble extracellular VEGFR-2/KDR consisting of all seven extracellular domains (sKDR D1-7) to obtain antibodies that block VEGF binding to VEGFR-2. Two specific single-chain antibodies (KDR1.3 and KDR2.6) that recognized human VEGFR-2 were selected; diversity analysis of the clones was performed by BstNI fingerprinting and nucleotide sequencing. The single-chain variable fragments (scFvs) were expressed in soluble form and specificity of interactions between affinity purified scFvs and VEGFR-2 was confirmed by ELISA. Binding of the recombinant antibodies for VEGFR-2 receptors was investigated by surface plasmon resonance spectroscopy. In vitro cell culture assays showed that KDR1.3 and KDR2.6 scFvs significantly suppressed the mitogenic response of human umbilical vein endothelial cells to recombinant human VEGF 165 in a dose-dependent manner, and reduced VEGF-dependent cell proliferation by 60% and 40%, respectively. In vivo analysis of these recombinant antibodies in a rat cornea angiogenesis model revealed that both antibodies suppressed the development of new corneal vessels (p < 0.05). Overall, in vitro and in vivo results disclose strong interactions of KDR1.3 and KDR2.6 scFvs with VEGFR-2. These findings indicate that KDR1.3 and KDR2.6 scFvs are promising antiangiogenic therapeutic agents. © 2011 International Union of Biochemistry and Molecular Biology, Inc.Item Open Access Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers(Elsevier, 2016-11) Senturk, B.; Cubuk, M. O.; Ozmen, M. C.; Aydin B.; Güler, Mustafa O.; Tekinay, A. B.Atypical angiogenesis is one of the major symptoms of severe eye diseases, including corneal neovascularization, and the complex nature of abnormal vascularization requires targeted methods with high biocompatibility. The targeting of VEGF is the most common approach for preventing angiogenesis, and the LPPR peptide sequence is known to strongly inhibit VEGF activity by binding to the VEGF receptor neuropilin-1. Here, the LPPR epitope is presented on a peptide amphiphile nanofiber system to benefit from multivalency and increase the anti-angiogenic function of the epitope. Peptide amphiphile nanofibers are especially useful for ocular delivery applications due to their ability to remain on the site of interest for extended periods of time, facilitating the long-term presentation of bioactive sequences. Consequently, the LPPR sequence was integrated into a self-assembled peptide amphiphile network to increase its efficiency in the prevention of neovascularization. Anti-angiogenic effects of the peptide nanofibers were investigated by using both in vitro and in vivo models. LPPR-PA nanofibers inhibited endothelial cell proliferation, tube formation, and migration to a greater extent than the soluble LPPR peptide in vitro. In addition, the LPPR-PA nanofiber system led to the prevention of vascular maturation and the regression of angiogenesis in a suture-induced corneal angiogenesis model. These results show that the anti-angiogenic activity exhibited by LPPR peptide nanofibers may be utilized as a promising approach for the treatment of corneal angiogenesis.Item Open Access The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelialmesenchymal transition in breast cancer(Impact Journals LLC, 2016) Raza, U.; Saatci, O.; Uhlmann, S.; Ansari, S. A.; Eyüpoglu, E.; Yurdusev, E.; Mutlu, M.; Ersan, P. G.; Altundağ, M. K.; Zhang, J. D.; Dogan, H. T.; Güler, G.; Şahin, Ö.Tumor cells develop drug resistance which leads to recurrence and distant metastasis. MicroRNAs are key regulators of tumor pathogenesis; however, little is known whether they can sensitize cells and block metastasis simultaneously. Here, we report miR-644a as a novel inhibitor of both cell survival and EMT whereby acting as pleiotropic therapy-sensitizer in breast cancer. We showed that both miR-644a expression and its gene signature are associated with tumor progression and distant metastasis-free survival. Mechanistically, miR-644a directly targets the transcriptional co-repressor C-Terminal Binding Protein 1 (CTBP1) whose knock-outs by the CRISPRCas9 system inhibit tumor growth, metastasis, and drug resistance, mimicking the phenotypes induced by miR-644a. Furthermore, downregulation of CTBP1 by miR-644a upregulates wild type- or mutant-p53 which acts as a 'molecular switch' between G1-arrest and apoptosis by inducing cyclin-dependent kinase inhibitor 1 (p21, CDKN1A, CIP1) or pro-apoptotic phorbol-12-myristate-13-acetate-induced protein 1 (Noxa, PMAIP1), respectively. Interestingly, an increase in mutant-p53 by either overexpression of miR-644a or downregulation of CTBP1 was enough to shift this balance in favor of apoptosis through upregulation of Noxa. Notably, p53- mutant patients, but not p53-wild type ones, with high CTBP1 have a shorter survival suggesting that CTBP1 could be a potential prognostic factor for breast cancer patients with p53 mutations. Overall, re-activation of the miR-644a/CTBP1/p53 axis may represent a new strategy for overcoming both therapy resistance and metastasis.Item Open Access Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer(Springer Netherlands, 2017-09) Taskoparan, B.; Seza, E. G.; Demirkol, S.; Tuncer, S.; Stefek, M.; Gure, A. O.; Banerjee, S.Purpose: Aldo-keto reductases (including AKR1B1 and AKR1B10) constitute a family of oxidoreductases that have been implicated in the pathophysiology of diabetes and cancer, including colorectal cancer (CRC). Available data indicate that, despite their similarities in structure and enzymatic functions, their roles in CRC may be divergent. Here, we aimed to determine the expression and functional implications of AKR1B1 and AKR1B10 in CRC. Methods: AKR1B1 and AKR1B10 gene expression levels were analyzed using publicly available microarray data and ex vivo CRC-derived cDNA samples. Gene Set Enrichment Analysis (GSEA), The Cancer Genome Atlas (TCGA) RNA-seq data and The Cancer Proteome Atlas (TCPA) proteome data were analyzed to determine the effect of high and low AKR1B1 and AKR1B10 expression levels in CRC patients. Proliferation, cell cycle progression, cellular motility, adhesion and inflammation were determined in CRC-derived cell lines in which these genes were either exogenously overexpressed or silenced. Results: We found that the expression of AKR1B1 was unaltered, whereas that of AKR1B10 was decreased in primary CRCs. GSEA revealed that, while high AKR1B1 expression was associated with increased cell cycle progression, cellular motility and inflammation, high AKR1B10 expression was associated with a weak inflammatory phenotype. Functional studies carried out in CRC-derived cell lines confirmed these data. Microarray data analysis indicated that high expression levels of AKR1B1 and AKR1B10 were significantly associated with shorter and longer disease-free survival rates, respectively. A combined gene expression signature of AKR1B10 (low) and AKR1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors. Conclusions: Despite their similarities, the expression levels and functions of AKR1B1 and AKR1B10 are highly divergent in CRC, and they may have prognostic implications.Item Open Access Phenotype-based variation as a biomarker of sensitivity to molecularly targeted therapy in melanoma(Royal Society of Chemistry, 2017) Senses, K. M.; Ghasemi M.; Akbar, M. W.; Isbilen, M.; Fallacara, A. L.; Frankenburg, S.; Schenone, S.; Lotem, M.; Botta, M.; Gure, A. O.Transcriptomic phenotypes defined for melanoma have been reported to correlate with sensitivity to various drugs. In this study, we aimed to define a minimal signature that could be used to distinguish melanoma sub-types in vitro, and to determine suitable drugs by which these sub-types can be targeted. By using primary melanoma cell lines, as well as commercially available melanoma cell lines, we find that the evaluation of MLANA and INHBA expression is as capable as one based on a combined analysis performed with genes for stemness, EMT and invasion/proliferation, in identifying melanoma subtypes that differ in their sensitivity to molecularly targeted drugs. Using this approach, we find that 75% of melanoma cell lines can be treated with either the MEK inhibitor AZD6244 or the HSP90 inhibitor 17AAG.Item Open Access Short-term dietary restriction in old zebrafish changes cell senescence mechanisms(Elsevier, 2016-10) Arslan-Ergul, Ayca; Erbaba, Begun; Karoglu, Elif Tugce; Halim, Dilara Ozge; Adams, Michelle M.Brain aging is marked by a decline in cognitive abilities and associated with neurodegenerative disorders. Recent studies have shown, neurogenesis continues into adulthood but is known to be decreasing during advancing age and these changes may contribute to cognitive alterations. Advances, which aim to promote better aging are of paramount importance. Dietary restriction (DR) is the only non-genetic intervention that reliably extends life- and health-span. Mechanisms of how and why DR and age affect neurogenesis are not well-understood, and have not been utilized much in the zebrafish, which has become a popular model to study brain aging and neurodegenerative disease due to widely available genetic tools. In this study we used young (8–8.5 months) and old (26–32.5 months) zebrafish as the model to investigate the effects of a short-term DR on actively proliferating cells. We successfully applied a 10-week DR to young and old fish, which resulted in a significant loss of body weight in both groups with no effect on normal age-related changes in body growth. We found that age decreased cell proliferation and increased senescence associated β-galactosidase, as well as shortened telomere lengths. In contrast, DR shortened telomere lengths only in young animals. Neither age nor DR changed the differentiation patterns of glial cells. Our results suggest that the potential effects of DR could be mediated by telomere regulation and whether these are beneficial or negative remains to be determined.Item Open Access Spatial organization of functional groups on bioactive supramolecular glycopeptide nanofibers for differentiation of mesenchymal stem cells (MSCs) to brown adipogenesis(American Chemical Society, 2016-12) Caliskan, O. S.; Sardan, Ekiz M.; Tekinay, A. B.; Güler, Mustafa O.Spatial organization of bioactive moieties in biological materials has significant impact on the function and efficiency of these systems. Here, we demonstrate the effect of spatial organization of functional groups including carboxylate, amine, and glucose functionalities by using self-assembled peptide amphiphile (PA) nanofibers as a bioactive scaffold. We show that presentation of bioactive groups on glycopeptide nanofibers affects mesenchymal stem cells (MSCs) in a distinct manner by means of adhesion, proliferation, and differentiation. Strikingly, when the glutamic acid is present in the glycopeptide backbone, the PA nanofibers specifically induced differentiation of MSCs into brown adipocytes in the absence of any differentiation medium as shown by lipid droplet accumulation and adipogenic gene marker expression analyses. This effect was not evident in the other glycopeptide nanofibers, which displayed the same functional groups but with different spatial organization. Brown adipocytes are attractive targets for obesity treatment and are found in trace amounts in adults, which also makes this specific glycopeptide nanofiber system an attractive tool to study molecular pathways of brown adipocyte formation.Item Open Access Strain-and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment(Wiley-Blackwell Publishing, 2008) Wang, J.; Gutala, R.; Hwang, Y. Y.; Kim J. -M.; Konu, O.; Ma, J. Z.; Li, M. D.A pathway-focused complementary DNA microarray and gene ontology analysis were used to investigate gene expression profiles in the amygdala, hippocampus, nucleus accumbens, prefrontal cortex (PFC) and ventral tegmental area of C3H/HeJ and C57BL/6J mice receiving nicotine in drinking water (100 μg/ml in 2% saccharin for 2 weeks). A balanced experimental design and rigorous statistical analysis have led to the identification of 3.5-22.1% and 4.1-14.3% of the 638 sequence-verified genes as significantly modulated in the aforementioned brain regions of the C3H/HeJ and C57BL/6J strains, respectively. Comparisons of differential expression among brain tissues showed that only a small number of genes were altered in multiple brain regions, suggesting presence of a brain region-specific transcriptional response to nicotine. Subsequent principal component analysis and Expression Analysis Systematic Explorer analysis showed significant enrichment of biological processes both in C3H/HeJ and C57BL/6J mice, i.e. cell cycle/proliferation, organogenesis and transmission of nerve impulse. Finally, we verified the observed changes in expression using real-time reverse transcriptase polymerase chain reaction for six representative genes in the PFC region, providing an independent replication of our microarray results. Together, this report represents the first comprehensive gene expression profiling investigation of the changes caused by nicotine in brain tissues of the two mouse strains known to exhibit differential behavioral and physiological responses to nicotine.Item Open Access Supramolecular GAG-like self-assembled glycopeptide nanofibers Induce chondrogenesis and cartilage regeneration(American Chemical Society, 2016) Yaylaci, U. S.; Ekiz, M. S.; Arslan, E.; Can, N.; Kilic, E.; Ozkan, H.; Orujalipoor, I.; Ide, S.; Tekinay, A. B.; Güler, Mustafa O.Glycosaminoglycans (GAGs) and glycoproteins are vital components of the extracellular matrix, directing cell proliferation, differentiation, and migration and tissue homeostasis. Here, we demonstrate supramolecular GAG-like glycopeptide nanofibers mimicking bioactive functions of natural hyaluronic acid molecules. Self-assembly of the glycopeptide amphiphile molecules enable organization of glucose residues in close proximity on a nanoscale structure forming a supramolecular GAG-like system. Our in vitro culture results indicated that the glycopeptide nanofibers are recognized through CD44 receptors, and promote chondrogenic differentiation of mesenchymal stem cells. We analyzed the bioactivity of GAG-like glycopeptide nanofibers in chondrogenic differentiation and injury models because hyaluronic acid is a major component of articular cartilage. Capacity of glycopeptide nanofibers on in vivo cartilage regeneration was demonstrated in microfracture treated osteochondral defect healing. The glycopeptide nanofibers act as a cell-instructive synthetic counterpart of hyaluronic acid, and they can be used in stem cell-based cartilage regeneration therapies.Item Open Access Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells(American Chemical Society, 2017-08) Arslan, Elif; Koc,, Meryem Hatip; Uysal, Ozge; Dikecoglu, Begum; Topal, Ahmet E.; Garifullin, Ruslan; Ozkan, Alper D.; Dana, A.; Hermida-Merino, D.; Castelletto, V.; Edwards-Gayle, C.; Baday, S.; Hamley, I.; Tekinay, Ayse B.; Güler, Mustafa O.Chirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin β1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.Item Open Access Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair(Taylor and Francis Ltd., 2016) Karahaliloǧlu, Z.; Demirbilek, M.; Şam, M.; Saǧlam, N.; Mizrak, A. K.; Denkbaş, E. B.The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 � 1.50 to 23 � 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation.