Browsing by Subject "Catalysis"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Item Open Access Atomic force microscopy: Methods and applications(Elsevier, 2017) Baykara, Mehmet Z.; Schwarz, U. D.; Lindon, J.; Tranter, G. E.; Koppenaal, D.This chapter provides an overview of atomic force microscopy, covering the fundamental aspects of the associated instrumentation and methodology as well as representative results from the literature highlighting a variety of application areas. In particular, atomic-resolution imaging and spectroscopy capabilities are emphasized, in addition to applications in biology, nanotribology and catalysis research. Finally, an outlook on emerging aspects and future prospects of atomic force microscopy is provided.Item Open Access Atomic layer deposition of ruthenium nanoparticles on electrospun carbon nanofibers: a highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane(American Chemical Society, 2018) Khalily, Mohammad Aref; Yurderi, M.; Haider, Ali; Bulut, A.; Patil, Bhushan; Zahmakiran, M.; Uyar, TamerWe report the fabrication of a novel and highly active nanocatalyst system comprising electrospun carbon nanofiber (CNF)-supported ruthenium nanoparticles (NPs) (Ru@CNF), which can reproducibly be prepared by the ozone-assisted atomic layer deposition (ALD) of Ru NPs on electrospun CNFs. Polyacrylonitrile (PAN) was electropsun into bead-free one-dimensional (1D) nanofibers by electrospinning. The electrospun PAN nanofibers were converted into well-defined 1D CNFs by a two-step carbonization process. We took advantage of an ozone-assisted ALD technique to uniformly decorate the CNF support by highly monodisperse Ru NPs of 3.4 ± 0.4 nm size. The Ru@CNF nanocatalyst system catalyzes the hydrolytic dehydrogenation of methylamine borane (CH3NH2BH3), which has been considered as one of the attractive materials for the efficient chemical hydrogen storage, with a record turnover frequency of 563 mol H2/mol Ru × min and an excellent conversion (>99%) under air at room temperature with the activation energy (Ea) of 30.1 kJ/mol. Moreover, Ru@CNF demonstrated remarkable reusability performance and conserved 72% of its inherent catalytic activity even at the fifth recycle.Item Open Access Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors(Institute of Physics Publishing, 2017) Bıyıklı, Necmi; Haider A.In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.Item Open Access Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water(Elsevier, 2017-04) Sarioglu O.F.; Keskin, N. O. S.; Celebioglu A.; Tekinay, T.; Uyar, TamerIn this study, preparation and application of novel biocomposite materials that were produced by encapsulation of bacterial cells within electrospun nanofibrous webs are described. A commercial strain of Pseudomonas aeruginosa which has methylene blue (MB) dye remediation capability was selected for encapsulation, and polyvinyl alcohol (PVA) and polyethylene oxide (PEO) were selected as the polymer matrices for the electrospinning of bacteria encapsulated nanofibrous webs. Encapsulation of bacterial cells was monitored by scanning electron microscopy (SEM) and fluorescence microscopy, and the viability of encapsulated bacteria was checked by live/dead staining and viable cell counting assay. Both bacteria/PVA and bacteria/PEO webs have shown a great potential for remediation of MB, yet bacteria/PEO web has shown higher removal performances than bacteria/PVA web, which was probably due to the differences in the initial viable bacterial cells for those two samples. The bacteria encapsulated electrospun nanofibrous webs were stored at 4 °C for three months and they were found as potentially storable for keeping encapsulated bacterial cells alive. Overall, the results suggest that electrospun nanofibrous webs are suitable platforms for preservation of living bacterial cells and they can be used directly as a starting inoculum for bioremediation of water systems.Item Open Access Catalytic self-threading: a new route for the synthesis of polyrotaxanes(American Chemical Society, 2004) Tuncel, D.; Steinke, J. H. G.Main chain and branched polyrotaxanes have been synthesized in which polymerization and rotaxane formation occur simultaneously, due to the presence of the catalytically active self-threading macrocycle cucurbit[6]uril. Using monomers that contain stopper groups to prevent the catalytic macrocycle from noncatalytic threading, it was possible to prepare polyrotaxanes in high yields with molecular weights up to 39000. These polyrotaxanes are structurally perfect in the sense that exactly two macrocyles are threaded onto each structural repeat unit. Investigations into the polymerization mechanism have demonstrated that the catalyst cucurbit[6]uril is highly sensitive toward the structure of the monomers employed and a poorly designed monomer may result in complete inactivity. Features of the mechanism are discussed in some detail.Item Open Access Chiral ceramic nanoparticles and peptide catalysis(American Chemical Society, 2017) Jiang S.; Chekini, M.; Qu, Z.-B.; Wang Y.; Yeltik A.; Liu, Y.; Kotlyar, A.; Zhang, T.; Li, B.; Demir, Hilmi Volkan; Kotov, N. A.The chirality of nanoparticles (NPs) and their assemblies has been investigated predominantly for noble metals and II-VI semiconductors. However, ceramic NPs represent the majority of nanoscale materials in nature. The robustness and other innate properties of ceramics offer technological opportunities in catalysis, biomedical sciences, and optics. Here we report the preparation of chiral ceramic NPs, as represented by tungsten oxide hydrate, WO3-x·H2O, dispersed in ethanol. The chirality of the metal oxide core, with an average size of ca. 1.6 nm, is imparted by proline (Pro) and aspartic acid (Asp) ligands via bio-to-nano chirality transfer. The amino acids are attached to the NP surface through C-O-W linkages formed from dissociated carboxyl groups and through amino groups weakly coordinated to the NP surface. Surprisingly, the dominant circular dichroism bands for NPs coated by Pro and Asp are different despite the similarity in the geometry of the NPs; they are positioned at 400-700 nm and 500-1100 nm for Pro- and Asp-modified NPs, respectively. The differences in the spectral positions of the main chiroptical band for the two types of NPs are associated with the molecular binding of the two amino acids to the NP surface; Asp has one additional C-O-W linkage compared to Pro, resulting in stronger distortion of the inorganic crystal lattice and greater intensity of CD bands associated with the chirality of the inorganic core. The chirality of WO3-x·H2O atomic structure is confirmed by atomistic molecular dynamics simulations. The proximity of the amino acids to the mineral surface is associated with the catalytic abilities of WO3-x·H2O NPs. We found that NPs facilitate formation of peptide bonds, leading to Asp-Asp and Asp-Pro dipeptides. The chiroptical activity, chemical reactivity, and biocompatibility of tungsten oxide create a unique combination of properties relevant to chiral optics, chemical technologies, and biomedicine.Item Open Access Cu-catalyzed selective mono-N-pyridylation: Direct access to 2-aminoDMAP/sulfonamides as bifunctional organocatalysts(2013) Isik, M.; Tanyeli, C.Direct and selective mono-N-pyridylation of trans-(R,R)-cyclohexane-1,2- diamine is described here. Facile preparation of a novel chiral 2-aminoDMAP core catalaphore via Cu catalysis has led to the development of various sulfonamide/2-aminoDMAPs as bifunctional acid/base organocatalysts (most in two steps overall), which have been shown to very effectively promote asymmetric conjugate addition of acetylacetone to trans-β-nitroolefins with good to excellent yields (87-93%) and enantioselectivites (up to 99%). © 2013 American Chemical Society.Item Open Access Design and synthesis of self-assembling peptides for fabrication of functional nanomaterials(2016-12) Khalily, Mohammad ArefSelf-assembling peptides are a class of supramolecular polymers, which exploit noncovalent interactions such as hydrogen bonding, hydrophobic, electrostatic, charge-transfer complex, π-π, and van der Waals interactions to generate well-defined supramolecular nanostructures including nanospheres, nanosheets, nanotubes, and nanofibers. These versatile peptide-based supramolecular nanomaterials have been utilized in variety of applications including catalysis, sensing, light harvesting, optoelectronic, bioelectronic and tissue engineering. In this thesis, use of supramolecular peptide nanofibers formed by specially designed short peptide sequences that can form sheet-like hydrogen bonded structures for controlled synthesis of nanometer scale functional materials were explored. Specifically, n-type and p-type β-sheet forming short peptide sequences were synthesized, which assemble separately into well-ordered nanofibers in aqueous media. These p-type and n-type nanofibers coassemble via hydrogen bonding and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This smart molecular design ensures alternating arrangement of D and A chromophores within n/p-coassembled supramolecular nanowires. Supramolecular n/p- coassembled nanowires were found to be formed by alternating A-D-A unit cells having an association constant of (KA) of 5 x 105 M-1. Moreover, I designed and synthesized β-sheet forming peptide nanofibers to fabricate different metal and metal oxide nanostructures in highly controlled manner using wet chemistry and atomic layer deposition techniques. These hybrid organic-inorganic nanostructures were employed in model Suzuki coupling, alkyne-azide cycloaddition and hydrolysis of ammonia borane reactions.Item Open Access Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles(American Vacuum Society, 2014) Taner-Camcı, M.; Süzer, ŞefikUltrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and the capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.Item Open Access Electrospinning combined with atomic layer deposition to generate applied nanomaterials: A review(American Chemical Society, 2020) Vempati, S.; Ranjith, K. S.; Topuz, Fuat; Bıyıklı, Necmi; Uyar, TamerCombining different material processing techniques is one of the keys to obtain materials that depict synergistic properties. In this review, we have reviewed a combination of two highly potential techniques, namely, electrospinning and atomic layer deposition (ALD), in the view of various applications. Over the past 10 years, our research groups are involved in the exploration of employing this combination for a range of applications. We also include some basic information on both the processes and diversity of nanostructures as a result of their combination. Nonwoven nanofiber membranes are excellent candidates for a wide range of applications. Also, they can act as templates to produce various other kinds of nanostructures when combined with ALD in small/large scale production. These nanostructures could be used as such or further subjected to other processing techniques yielding hierarchical structures. In this review, we exclusively survey and highlight the unique capabilities of combined electrospinning and ALD for applications in catalysis, photocatalysis, solar cells, batteries and gas sensors.Item Open Access Facile synthesis of cross-linked patchy fluorescent conjugated polymer nanoparticles by click reactions(2011) İbrahimova, V.; Ekiz, S.; Gezici, Ö.; Tuncel, D.Here, we report a novel method to synthesize multifunctional nanoparticles that can be used in biological studies, such as in cell imaging and as a carrier for biomolecules/drugs. The nanoparticles were prepared either via Cu-catalyzed or cucurbit[6]uril (CB6)-catalyzed click reactions between azide groups containing hydrophobic blue, green and yellow emitting fluorene-based conjugated polymers and a hydrophilic diaminodialkyne containing cross-linker. Through the click reaction, not only does the cross-linking confer stability, but it also introduces functional groups, such as triazoles and amines, to the nanoparticles. Moreover, CB6 not only acted as a catalyst to facilitate the copper-free click reaction, but it also allowed us to obtain nanoparticles containing rotaxanes in which the triazole units were encapsulated by CB6 units. TEM images of the nanoparticles also showed that they display very interesting morphologies. Incorporation of hydrophilic functional groups to the hydrophobic conjugated polymers resulted in a distinct phase separation, producing Janus-like or patchy particles.Item Open Access Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV-Visible light radiations(Elsevier Ltd, 2016) Mittal, M.; Sharma, M.; Pandey, O. P.Undoped and Manganese (Mn) doped zinc oxide (ZnO) (Zn1- xMnxO, x=0.005, 0.01, 0.015 and 0.02) nanoparticles (NPs) capped with (1.0%) Thioglycerol (TG) has been successfully synthesized by co-precipitation method. Optical and morphological studies have been done for photophysical and structural analysis of synthesized materials. The photocatalytic activity of undoped and Mn doped ZnO NPs were investigated by degradation of crystal violet (CV) dye under UV-Visible light radiations. It has been found that Mn (1.0%) doping concentration is optimal for photophysical and photocatalytic properties. When the pH of as synthesized optimum doped ZnO NPs varied from natural pH i.e. from 6.7 to 8.0 and 10.0, the degradation of CV dye increases from 92% to 95% and 98% in 180min respectively. Further on increasing the pH of optimum doped synthesized NPs to 12.0, almost 100% degradation has been achieved in 150min. Optimum doped photocatalyst synthesized at pH-12.0 has also effectively degraded the CV dye solution in acidic and basic medium thus showed its utility in various industries. However, it has been found that 100% of CV dye quickly degraded in 30min when only 1.0% of hydrogen peroxide (H2O2) was introduced along with optimized NPs synthesized at pH-12. Kinetic studies show that the degradation of CV dye follows pseudo first and second-order kinetic law. Further an industrial anionic polyazo Sirius red F3B (SRF3B) dye has been degraded to 100% with optimized NPs synthesized at pH-12.0 in 15min only.Item Open Access Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: influence of the preparation method(2009) Andreeva, D.; Ivanov, I.; Ilieva, L.; Abrashev, M. V.; Zanella, R.; Sobczak, J. W.; Lisowski, W.; Kantcheva, M.; Avdeev, G.; Petrov, K.Gold catalysts based on ceria, doped by various RE metals (La, Sm, Gd, Yb, Y) were studied. The influence of the preparation methods on structure, properties and catalytic activity in the WGS reaction was investigated. The catalysts' supports were prepared using two different methods: co-precipitation (CP) and mechanochemical activation (MA). The catalysts were tested in a wide temperature interval without and after reactivation. All samples were characterized using a combination of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS) and TPR. It was found that the catalytic activity of MA catalysts is higher than CP ones. The gold catalysts based on ceria doped by Yb and Sm exhibited the highest activity. After reactivation in air the MA samples almost kept the WGS activity same, while the CP catalysts increased it. The catalysts of a single- and double-phase structure are formed as a result of CP and MA preparation, respectively. There are no big differences in the gold particles size (2-3 nm) depending on dopants and on the preparation techniques. The RS spectra analysis indicates that most probably the oxygen vacancies are adjacent to Me3+ dopant and the ceria structure seems to be better ordered than in the case of alumina as a dopant. There is no distinct correlation between reducibility and WGS activity. The XPS analysis disclose positively charged gold particles in addition to metallic gold within a surface region of fresh samples and only metallic gold on the samples after catalytic processing. There is no simple correlation between the concentration of Ce3+ in the samples and their WGS activity.Item Open Access Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: Effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers(Institute of Physics Publishing, 2018) Ranjith, K. S.; Celebioglu A.; Uyar, TamerHere, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min-1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.Item Open Access Mesoporous metallic rhodium nanoparticles(Nature Publishing Group, 2017) Jiang B.; Li C.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, M. S. A.; Islam, M. T.; Wood, K.; Henzie, J.; Yamauchi, Y.Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ∼1/42.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O 2.Item Open Access Molecular switch based on a cucurbit[6]uril containing bistable [3]rotaxane(2007) Tuncel, D.; Özsar, Ö.; Tiftik, H. B.; Salih, B.A bistable CB6-based [3]rotaxane with two recognition sites has been prepared very efficiently in a high yield synthesis through CB6 catalyzed 1,3-dipolar cycloaddition; this rotaxane behaves as a reversible molecular switch and exhibits conformational changes caused by the movement of rings under base, acid and heat stimuli from one location to the other. © The Royal Society of Chemistry.Item Open Access Nanograined surface shell wall controlled ZnO–ZnS core–shell nanofibers and their shell wall thickness dependent visible photocatalytic properties(Royal Society of Chemistry, 2017) Ranjith, K. S.; Senthamizhan A.; Balusamy, B.; Uyar, TamerThe core-shell form of ZnO-ZnS based heterostructural nanofibers (NF) has received increased attention for use as a photocatalyst owing to its potential for outstanding performance under visible irradiation. One viable strategy to realize the efficient separation of photoinduced charge carriers in order to improve catalytic efficiency is to design core-shell nanostructures. But the shell wall thickness plays a vital role in effective carrier separation and lowering the recombination rate. A one dimensional (1D) form of shell wall controlled ZnO-ZnS core-shell nanofibers has been successfully prepared via electrospinning followed by a sulfidation process. The ZnS shell wall thickness can be adjusted from 5 to 50 nm with a variation in the sulfidation reaction time between 30 min and 540 min. The results indicate that the surfaces of the ZnO nanofibers were converted to a ZnS shell layer via the sulfidation process, inducing visible absorption behavior. Photoluminescence (PL) spectral analysis indicated that the introduction of a ZnS shell layer improved electron and hole separation efficiency. A strong correlation between effective charge separation and the shell wall thickness aids the catalytic behavior of the nanofiber network and improves its visible responsive nature. The comparative degradation efficiency toward methylene blue (MB) has been studied and the results showed that the ZnO-ZnS nanofibers with a shell wall thickness of ∼20 nm have 9 times higher efficiency than pristine ZnO nanofibers, which was attributed to effective charge separation and the visible response of the heterostructural nanofibers. In addition, they have been shown to have a strong effect on the degradation of Rhodamine B (Rh B) and 4-nitrophenol (4-NP), with promising reusable catalytic efficiency. The shell layer upgraded the nanofiber by acting as a protective layer, thus avoiding the photo-corrosion of ZnO during the catalytic process. A credible mechanism for the charge transfer process and a mechanism for photocatalysis supported by trapping experiments in the ZnO-ZnS heterostructural system for the degradation of an aqueous solution of MB are also explicated. Trapping experiments indicate that h+ and OH are the main active species in the ZnO-ZnS heterostructural catalyst, which do not effectively contribute in a bare ZnO catalytic system. Our work also highlights the stability and recyclability of the core-shell nanostructure photocatalyst and supports its potential for environmental applications. We thus anticipate that our results show broad potential in the photocatalysis domain for the design of a visible light functional and reusable core-shell nanostructured photocatalyst.Item Open Access Oligomerization of ethylene in a slurry reactor using a nickel/sulfated alumina catalyst(American Chemical Society, 1997) Zhang, Q.; Kantcheva, M.; Dalla Lana, I. G.During the oligomerization of ethylene over heterogeneous catalysts, the production of α-olefins may be lowered because of an accompanying deactivation of catalyst resulting from strong adsorption of products, by isomerization or by a tendency to copolymerize into branched products. The oligomerization of ethylene was studied using Ni(II)/sulfated alumina catalysts prepared with a nonporous fumed alumina (ALON) support. The influences of methods of catalyst preparation and activation upon oligomerization activity were screened using a gas - solid microreactor. On the basis of the test results obtained in the microreactor, a modified form of the superior catalyst was prepared and its performance was examined in more detail using a well-agitated gas - liquid - solid slurry reactor. This catalyst exhibited very good oligomerization activity with no apparent deactivation in the slurry reactor at temperatures at or below 298 K and at near-atmospheric pressure. Complete conversion of the ethylene with the production of mainly two oligomers, 1-butene and 1-hexene, was attained. After 34 h in the slurry, formation of a significant amount of two branched C6 isomers was observed.Item Open Access Oligonucleotide-based label-free detection with optical microresonators: strategies and challenges(Royal Society of Chemistry, 2016) Toren, P.; Ozgur E.; Bayındır, MehmetThis review targets diversified oligonucleotide-based biodetection techniques, focusing on the use of microresonators of whispering gallery mode (WGM) type as optical biosensors mostly integrated with lab-on-a-chip systems. On-chip and microfluidics combined devices along with optical microresonators provide rapid, robust, reproducible and multiplexed biodetection abilities in considerably small volumes. We present a detailed overview of the studies conducted so far, including biodetection of various oligonucleotide biomarkers as well as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs) and proteins. We particularly advert to chemical surface modifications for specific and selective biosensing.Item Open Access Photocatalytic conversion of nitric oxide on titanium dioxide: cryotrapping of reaction products for online monitoring by mass spectrometry(American Chemical Society, 2016) Lu, W.; Olaitan, A. D.; Brantley, M. R.; Zekavat, B.; Erdogan, D. A.; Ozensoy, E.; Solouki, T.Details of coupling a catalytic reaction chamber to a liquid nitrogen-cooled cryofocuser/triple quadrupole mass spectrometer for online monitoring of nitric oxide (NO) photocatalytic reaction products are presented. Cryogenic trapping of catalytic reaction products, via cryofocusing prior to mass spectrometry analysis, allows unambiguous characterization of nitrous oxide (N2O) and nitrogen oxide species (i.e., NO and nitrogen dioxide (NO2)) at low concentrations. Results are presented, indicating that the major photocatalytic reaction product of NO in the presence of titanium dioxide (TiO2) P25 and pure anatase catalysts when exposed to ultraviolet (UV) light (at a wavelength of 365 nm) is N2O. However, in the presence of rutile-rich TiO2 catalyst and UV light, the conversion of NO to N2O was less than 5% of that observed with the P25 or pure anatase TiO2 catalysts.