Browsing by Subject "Atomic layer deposition"
Now showing 1 - 20 of 90
- Results Per Page
- Sort Options
Item Open Access 2-nm laser-synthesized Si nanoparticles for low-power charge trapping memory devices(IEEE, 2014-08) El-Atab, N.; Özcan, Ayşe; Alkış, Sabri; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of embedding Silicon Nanoparticles (Si-NPs) in ZnO based charge trapping memory devices is studied. Si-NPs are fabricated by laser ablation of a silicon wafer in deionized water followed by sonication and filtration. The active layer of the memory was deposited by Atomic Layer Deposition (ALD) and spin coating technique was used to deliver the Si-NPs across the sample. The nanoparticles provided a good retention of charges (>10 years) in the memory cells and allowed for a large threshold voltage (Vt) shift (3.4 V) at reduced programming voltages (1 V). The addition of ZnO to the charge trapping media enhanced the electric field across the tunnel oxide and allowed for larger memory window at lower operating voltages. © 2014 IEEE.Item Open Access 97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold(Royal Society of Chemistry, 2017) Ghobadi, A.; Dereshgi, S. A.; Hajian, H.; Birant, G.; Butun, B.; Bek, A.; Özbay, EkmelIn this paper, we propose a facile and large scale compatible design to obtain perfect ultrabroadband light absorption using metal-dielectric core-shell nanowires. The design consists of atomic layer deposited (ALD) Pt metal uniformly wrapped around hydrothermally grown titanium dioxide (TiO2) nanowires. It is found that the randomly oriented dense TiO2 nanowires can impose excellent light trapping properties where the existence of an ultrathin Pt layer (with a thickness of 10 nm) can absorb the light in an ultrabroadband frequency range with an amount near unity. Throughout this study, we first investigate the formation of resonant modes in the metallic nanowires. Our findings prove that a nanowire structure can support multiple longitudinal localized surface plasmons (LSPs) along its axis together with transverse resonance modes. Our investigations showed that the spectral position of these resonance peaks can be tuned with the length, radius, and orientation of the nanowire. Therefore, TiO2 random nanowires can contain all of these features simultaneously in which the superposition of responses for these different geometries leads to a flat perfect light absorption. The obtained results demonstrate that taking unique advantages of the ALD method, together with excellent light trapping of chemically synthesized nanowires, a perfect, bifacial, wide angle, and large scale compatible absorber can be made where an excellent performance is achieved while using less materials.Item Embargo A machine learning approach for the estimation of photocatalytic activity of ALD ZnO thin films on fabric substrates(Elsevier, 2024-02-01) Akyıldız, Halil I.; Yiğit, E.; Arat, A. B.; Islam, S.Research in the field of photocatalytic wastewater treatment is striving to enhance catalyst materials to achieve high-performance systems. A promising approach to this goal has been immobilizing photocatalytic materials on fibrous substrates via atomic layer deposition (ALD). Nevertheless, both the ALD process and the assessment of photocatalytic performance involve a multitude of parameters necessitating thorough investigation. In this study, we employ popular machine-learning algorithms, including Support Vector Regression (SVR) and Artificial Neural Networks (ANN), to predict the photocatalytic activity of ALD-coated textiles. The photocatalytic activity is evaluated through methylene blue and methyl orange degradation tests. Machine learning algorithms are tested and trained using the k-fold cross-validation technique. The findings demonstrate that the ANN and SVR methods utilized in this research can predict catalytic activity with mean absolute percentage errors (MAPE) of 2.35 and 3.25, respectively. This study illuminates that, within the defined range of process parameters, the photocatalytic activity of ALD-coated textiles can be precisely estimated with suitable machine-learning algorithms.Item Open Access An all-ZnO microbolometer for infrared imaging(Elsevier BV, 2014) Kesim, Y. E.; Battal, E.; Tanrikulu, M. Y.; Okyay, Ali KemalMicrobolometers are extensively used for uncooled infrared imaging applications. These imaging units generally employ vanadium oxide or amorphous silicon as the active layer and silicon nitride as the absorber layer. However, using different materials for active and absorber layers increases the fabrication and integration complexity of the pixel structure. In order to reduce fabrication steps and therefore increase the yield and reduce the cost of the imaging arrays, a single layer can be employed both as the absorber and the active material. In this paper, we propose an all-ZnO microbolometer, where atomic layer deposition grown zinc oxide is employed both as the absorber and the active material. Optical constants of ZnO are measured and fed into finite-difference-time-domain simulations where absorption performances of microbolometers with different gap size and ZnO film thicknesses are extracted. Using the results of these optical simulations, thermal simulations are conducted using finite-element-method in order to extract the noise equivalent temperature difference (NETD) and thermal time constant values of several bolometer structures with different gap sizes, arm and film thicknesses. It is shown that the maximum performance of 171 mK can be achieved with a body thickness of 1.1 μm and arm thickness of 50 nm, while the fastest response with a time constant of 0.32 ms can be achieved with a ZnO thickness of 150 nm both in arms and body. © 2014 Elsevier B.V. All rights reserved.Item Open Access Amorphous to tetragonal zirconia anostructures and evolution of valence and core regions(American Chemical Society, 2015) Vempati S.; Kayaci-Senirmak, F.; Ozgit-Akgun, C.; Bıyıklı, Necmi; Uyar, TamerIn this report, we study the evolution of valence band (VB) structure during a controlled amorphous to tetragonal transformation of ZrO2 core-shell nanostructures fabricated from electrospun nanofiber template (at 130, 200, and 250 °C). Shell-ZrO2 was formed with atomic layer deposition. X-ray diffraction and transmission electron microscopy are employed to unveil the transformation of amorphous to crystalline structure of ZrO2. O 1s core-level spectra indicated chemisorbed oxygen (OCh) of almost invariant fraction for the three samples. Zr 3s level suggested that the sample deposited at 130 °C has depicted a peak at relatively higher binding energy. Analyses on Zr 3d spectra indicated the presence of metallic-Zr (Zr+ζ, 0 ≤ |ζ| < 4), the fraction of which decreases with increasing template temperature. VB region is analyzed until ∼64 eV below the Fermi level (EF). The region close to EF depicted features that are dissimilar to the literature. This discrepancy is explained on the basis of the analyses from O 1s, Zr 3d, and Zr 4p levels including hybridization of orbitals from chemisorbed species. These levels were analyzed in terms of peak characteristics such as spectral position, area under the peak, etc. The results of this study would enhance the understanding of the evolution of various bands in the presence of OCh and changes to the crystallinity enabling the functionalities that are not available in the single-phase ZrO2.Item Open Access Area-selective atomic layer deposition using an inductively coupled plasma polymerized fluorocarbon layer: A case study for metal oxides(American Chemical Society, 2016) Haider, A.; Deminskyi, P.; Khan, T. M.; Eren, H.; Bıyıklı, NecmiArea-selective atomic layer deposition (AS-ALD) has attracted immense attention in recent years for self-aligned accurate pattern placement with subnanometer thickness control. Here, we demonstrate a methodology to achieve AS-ALD by using inductively couple plasma (ICP) grown fluorocarbon polymer film as hydrophobic blocking layer for selective deposition. Our approach has been tested for metal-oxide materials including ZnO, Al2O3, and HfO2. Contact angle, X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometer, and scanning electron microscopy (SEM) measurements were performed to investigate the blocking ability of plasma polymerized fluorocarbon layers against ALD-grown metal-oxide films. A considerable growth inhibition for ZnO has been observed on fluorocarbon coated Si(100) surfaces, while the same polymerized surface caused a relatively slow nucleation for HfO2 films. No growth selectivity was obtained for Al2O3 films, displaying almost the same nucleation behavior on Si and fluorocarbon surfaces. Thin film patterning has been demonstrated using this strategy by growing ZnO on lithographically patterned fluorocarbon/Si samples. High resolution SEM images and XPS line scan confirmed the successful patterning of ZnO up to a film thickness of ∼15 nm. © 2016 American Chemical Society.Item Open Access Atomic layer deposited Al 2O 3 passivation of type II InAs/GaSb superlattice photodetectors(AIP, 2012) Salihoğlu, Ömer; Muti, Abdullah; Kutluer, Kutlu; Tansel, T.; Turan, R.; Kocabaş, Coşkun; Aydınlı, AtillaTaking advantage of the favorable Gibbs free energies, atomic layer deposited (ALD) aluminum oxide (Al 2O 3) was used as a novel approach for passivation of type II InAs/GaSb superlattice (SL) midwave infrared (MWIR) single pixel photodetectors in a self cleaning process (λ cut-off ∼ 5.1 m). Al 2O 3 passivated and unpassivated diodes were compared for their electrical and optical performances. For passivated diodes, the dark current density was improved by an order of magnitude at 77 K. The zero bias responsivity and detectivity was 1.33 A/W and 1.9 × 10 13 Jones, respectively at 4μm and 77 K. Quantum efficiency (QE) was determined as 41 for these detectors. This conformal passivation technique is promising for focal plane array (FPA) applications. © 2012 American Institute of Physics.Item Open Access Atomic Layer Deposition for Vertically Integrated ZnO Thin Film Transistors: Toward 3D High Packing Density Thin Film Electronics(Wiley-VCH Verlag, 2017) Sisman, Z.; Bolat, S.; Okyay, Ali KemalWe report on the first demonstration of the atomic layer deposition (ALD) based three dimensional (3D) integrated ZnO thin film transistors (TFTs) on rigid substrates. Devices exhibit high on-off ratio (∼106) and high effective mobility (∼11.8 cm2 V−1 s−1). It has also been demonstrated that the steps of fabrication result in readily stable electrical characteristics in TFTs, eliminating the need for post-production steps. These results mark the potential of our fabrication method for the semiconducting metal oxide-based vertical-integrated circuits requiring high packing density and high functionality. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimItem Open Access Atomic layer deposition of metal oxides on self-assembled peptide nanofiber templates for fabrication of functional nanomaterials(2016-08) Eren, HamitThere are mainly two basic approaches in nanostructured materials synthesis. The rst one is the top-down approach and requires material removal from a bulk substrate material by chemical, physical, mechanical or thermal means; acid etching, focused ion milling, and laser ablation are among these top-down synthesis techniques. It is a straightforward { albeit poor in material architecture control { method that has established its niche in today's high-volume CMOS transistor fabrication technology which already produces single-digit nanometerscale device features. On the other hand, bottom-up approach exploits ne-tuned materials assembly. Bottom-up approach is realized via direct self-assembly of target nanostructures or material growth on synthetic or natural nanotemplates. Bottom-up nanostructured materials synthesis o ers considerably wider spectrum of achievable material architectures and structural hierarchies. Synthesis of nanostructured materials on self-assembled soft nanotemplates is of signi cant importance because many biological systems utilize this very similar approach to construct complex biomolecule-templated materials. Peptide amphiphile (PA) molecules with their intrinsic property to self-assemble into nanostructures such as bers, present a versatile tool in inorganic material templating. PAs were used as soft templates in several studies for fabrication of nanoscale inorganic materials. Most of these studies are focused on in-solution material deposition on the surface of a template. Even though this approach allows successful material deposition, precise control over material thickness, uniformity, and high conformality is di cult to achieve in a repeatable manner. In order to circumvent this challenge, in this thesis, atomic layer deposition (ALD) technique was deployed for conformal coating of PA nanonetwork templates. ALD involves low-temperature iterative vapor-phase material deposition in a self-limiting fashion. In each deposition half-cycle, Ti- or Zn- containing volatile metalorganic complexes form a self-limiting uniform monolayer that consequently reacts with water vapor (H2O) as an oxygen precursor in the subsequent process half-cycle. As each half-cycle is separated with purge cycles, no gas-phase reactions occurs and material growth proceeds only with surface chemical ligand-exchange reactions. ALD approach allowed obtaining TiO2 or ZnO nanonetworks with tunable wall thickness and ultimate conformality. Obtained metal oxide-peptide hybrid materials were further treated di erently. In the case of TiO2, organic template was removed upon calcination at 450 C, a temperature at which amorphous titania transforms to anatase form. ZnO-peptide hybrid materials on the other hand, did not undergo any thermal processing, as ZnO already grows in wurtzite crystalline form during ALD process. In principle, nanostructured anatase TiO2 and wurtzite ZnO are wide bandgap semiconductors which can be used as photoanode materials. Nanostructured anodic materials still attract a great interest as the matter at nanoscale regimes can provide considerable enhancement in charge carrier separation, charge carrier transport, and active surface area. Here we demonstrate the fabrication of nanostructured TiO2 and ZnO on self-assembled soft templates. As a proof of principle, we utilized semiconducting TiO2 and ZnO in assembly of dye sensitized solar cells and studied material thickness e ect on device performance parameters such as open circuit voltage (Voc), short circuit current (Jsc), and ll factor. Three sets of nanostructured photoanodes with di erent TiO2 deposition cycles (100, 150, and 200) and ZnO deposition cycles (100, 125 and 150) were fabricated. TiO2 and ZnO nanonetworks in photoanodes form a system of interconnected nanotubes, which can facilitate electron transfer. Moreover, these networks are porous high-surface area materials and they can drastically increase number of sensitizer molecules attached to the semiconductor material surface.Item Open Access Atomic layer deposition of NiOOH/Ni(OH) 2 on PIM-1-based N-Doped carbon nanofibers for electrochemical water splitting in alkaline medium(Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Patil, Bhushan; Satılmış, Bekir; Khalily, Mohammad Aref; Uyar, TamerPortable and flexible energy devices demand lightweight and highly efficient catalytic materials for use in energy devices. An efficient water splitting electrocatalyst is considered an ideal future energy source. Well‐aligned high‐surface‐area electrospun polymers of intrinsic microporosity (PIM‐1)‐based nitrogen‐doped carbon nanofibers were prepared as a free‐standing flexible electrode. A non‐noble‐metal catalyst NiOOH/Ni(OH)2 was precisely deposited over flexible free‐standing carbon nanofibers by using atomic layer deposition (ALD). The morphology, high surface area, nitrogen doping, and Ni states synergistically showed a low onset potential (ηHER=−40 and ηOER=290 mV vs. reversible hydrogen electrode), small overpotential at η10 [oxygen evolution reaction (OER)=390.5 mV and hydrogen evolution reaction (HER)=−147 mV], excellent kinetics (Tafel slopes for OER=50 mV dec−1 and HER=41 mV dec−1), and high stability (>16 h) towards water splitting in an alkaline medium (0.1 m KOH). The performance was comparable with that of state‐of‐the‐art noble‐metal catalysts (e.g., Ir/C, Ru/C for OER, and Pt/C for HER). Post‐catalytic characterization with X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy further proved the durability of the electrode. This study provides insight into the design of 1D‐aligned N‐doped PIM‐1 electrospun carbon nanofibers as a flexible and free‐standing NiOOH/Ni(OH)2 decorated electrode as a highly stable nanocatalyst for water splitting in an alkaline medium.Item Open Access Atomic layer deposition of Pd nanoparticles on N-Doped electrospun carbon nanofibers: optimization of ORR activity of Pd-Based nanocatalysts by tuning their nanoparticle size and loading(Wiley-VCHVerlagGmbH& Co. KGaA,Weinheim, 2019) Khalily, Mohammad Aref; Patil, Bhushan; Yılmaz, Eda; Uyar, TamerOptimization of size, loading and chemical composition of catalytic nanoparticles is a crucial step to achieve cost‐effective and efficient (electro) catalysts. This report elaborates optimization of palladium (Pd) nanoparticle size and loading on the electrospun based N‐doped carbon nanofibers (nCNF) towards oxygen reduction reaction (ORR) for the energy devices like fuel cell, metal air batteries. Electrospinning was utilized to produce one‐dimensional (1D) polyacrylonitrile nanofibers followed by a two‐step carbonization process obtaining well‐defined conductive nCNF having diameters in the range of 200–350 nm. As‐synthesized nCNF was decorated with discrete Pd nanoparticles ranging from 2.6±0.4 nm to 4.7±0.5 nm via thermal atomic layer deposition (ALD) technique. We found that nCNF deposited Pd nanoparticles having 3.9±0.6 nm size (Pd20/nCNF) showed the best ORR activity with the smallest Tafel slope of 58 mV dec−1 along with four electrons involved in the ORR. In addition, high value at half wave potential (E1/2=806 mV vs. RHE) and exchange current densities (i0=6.998 mA cm−2) at Pd20/nCNF makes it efficient catalyst among other Pd decorated nCNF. Moreover, we found that electrocatalyst with lower loading/density of Pd nanoparticles showed enhanced ORR activity.Item Open Access Atomic layer deposition of ruthenium nanoparticles on electrospun carbon nanofibers: a highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane(American Chemical Society, 2018) Khalily, Mohammad Aref; Yurderi, M.; Haider, Ali; Bulut, A.; Patil, Bhushan; Zahmakiran, M.; Uyar, TamerWe report the fabrication of a novel and highly active nanocatalyst system comprising electrospun carbon nanofiber (CNF)-supported ruthenium nanoparticles (NPs) (Ru@CNF), which can reproducibly be prepared by the ozone-assisted atomic layer deposition (ALD) of Ru NPs on electrospun CNFs. Polyacrylonitrile (PAN) was electropsun into bead-free one-dimensional (1D) nanofibers by electrospinning. The electrospun PAN nanofibers were converted into well-defined 1D CNFs by a two-step carbonization process. We took advantage of an ozone-assisted ALD technique to uniformly decorate the CNF support by highly monodisperse Ru NPs of 3.4 ± 0.4 nm size. The Ru@CNF nanocatalyst system catalyzes the hydrolytic dehydrogenation of methylamine borane (CH3NH2BH3), which has been considered as one of the attractive materials for the efficient chemical hydrogen storage, with a record turnover frequency of 563 mol H2/mol Ru × min and an excellent conversion (>99%) under air at room temperature with the activation energy (Ea) of 30.1 kJ/mol. Moreover, Ru@CNF demonstrated remarkable reusability performance and conserved 72% of its inherent catalytic activity even at the fifth recycle.Item Unknown Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers(TÜBİTAK, 2020) Karatutlu, AliCladding light strippers are essential components in high-power fiber lasers used for removal of unwanted cladding light that can distort the beam quality or even damage the whole fiber laser system. In this study, an Atomic Layer Deposition system was used for the first time to prepare the cladding light stripper devices using a 40 nm thick zirconia layer grown on optical fiber. The thickness of the zirconia coating was confirmed using the Scanning Electron Microscopy (SEM) and the Ellipsometry techniques. The elemental analysis was also performed using the wavelength dispersive X-ray spectroscopy technique. The Raman spectroscopy and XRD data confirm the structure of the atomic layer deposition-grown zirconia thin films to be predominantly amorphous. The cladding light stripper devices formed using the zirconia thin films with the lengths of 8.5 and 15.5 cm were able to strip approximately 30% (~1.5 dB) and 40% (~2.3 dB) of the unwanted cladding light.Item Open Access Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors(Institute of Physics Publishing, 2017) Bıyıklı, Necmi; Haider A.In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.Item Open Access Atomic-layer-deposited zinc oxide as tunable uncooled infrared microbolometer material(Wiley-VCH Verlag, 2014) Battal, E.; Bolat, S.; Tanrikulu, M. Y.; Okyay, Ali Kemal; Akin, T.ZnO is an attractive material for both electrical and optical applications due to its wide bandgap of 3.37 eV and tunable electrical properties. Here, we investigate the application potential of atomic-layer-deposited ZnO in uncooled microbolometers. The temperature coefficient of resistance is observed to be as high as-10.4% K-1 near room temperature with the ZnO thin film grown at 120 °C. Spectral noise characteristics of thin films grown at various temperatures are also investigated and show that the 120 °C grown ZnO has a corner frequency of 2 kHz. With its high TCR value and low electrical noise, atomic-layer-deposited (ALD) ZnO at 120 °C is shown to possess a great potential to be used as the active layer of uncooled microbolometers. The optical properties of the ALD-grown ZnO films in the infrared region are demonstrated to be tunable with growth temperature from near transparent to a strong absorber. We also show that ALD-grown ZnO can outperform commercially standard absorber materials and appears promising as a new structural material for microbolometer-based applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures(Elsevier Ltd, 2015) Turut, A.; Karabulut, A.; Ejderha, K.; Bıyıklı, NecmiWe have studied the admittance and current–voltage characteristics of the Au/Ti/Al2O3/nGaAs structure. The Al2O3 layer of about 5 nm was formed on the n-GaAs by atomic layer deposition. The barrier height (BH) and ideality factor values of 1.18 eV and 2.45 were obtained from the forward-bias ln I vs V plot at 300 K. The BH value of 1.18 eV is larger than the values reported for conventional Ti/n-GaAs or Au/Ti/n-GaAs diodes. The barrier modification is very important in metal semiconductor devices. The use of an increased barrier diode as the gate can provide an adequate barrier height for FET operation while the decreased barrier diodes also show promise as small signal zero-bias rectifiers and microwave. The experimental capacitance and conductance characteristics were corrected by taking into account the device series resistance Rs. It has been seen that the noncorrection characteristics cause a serious error in the extraction of the interfacial properties. Furthermore, the device behaved more capacitive at the reverse bias voltage range rather than the forward bias voltage range because the phase angle in the reverse bias has remained unchanged as 901 independent of the measurement frequency.Item Open Access Comparison of trimethylgallium and triethylgallium as "ga" source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition(AVS Science and Technology Society, 2016-02) Alevli, M.; Haider A.; Kizir S.; Leghari, S. A.; Bıyıklı, NecmiGaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.Item Open Access Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices(Institute of Physics Publishing Ltd., 2017) El-Atab, N.; Ulusoy, T. G.; Ghobadi, A.; Suh, J.; Islam, R.; Okyay, Ali Kemal; Saraswat, K.; Nayfeh, A.The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.Item Open Access Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films(A I P Publishing LLC, 2015) Altuntas, H.; Ozgit Akgun, C.; Donmez, I.; Bıyıklı, NecmiHere, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200°C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2-21.5 MV/m), Schottky emission (23.6-39.5 MV/m), Frenkel-Poole emission (63.8-211.8 MV/m), trap-assisted tunneling (226-280 MV/m), and Fowler-Nordheim tunneling (290-447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.Item Open Access Demonstration of flexible thin film transistors with GaN channels(American Institute of Physics Inc., 2016) Bolat, S.; Sisman, Z.; Okyay, Ali KemalWe report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far. © 2016 Author(s)