Browsing by Subject "Antibacterial properties"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes(Elsevier, 2014) Celebioglu A.; Umu, O. C. O.; Tekinay, T.; Uyar, TamerThe electrospinning of nanofibers (NF) from cyclodextrin inclusion complexes (CD-IC) with an antibacterial agent (triclosan) was achieved without using any carrier polymeric matrix. Polymer-free triclosan/CD-IC NF were electrospun from highly concentrated (160% CD, w/w) aqueous triclosan/CD-IC suspension by using two types of chemically modified CD; hydroxypropyl-beta-cyclodextrin (HPβCD) and hydroxypropyl-gamma-cyclodextrin (HPγCD). The morphological characterization of the electrospun triclosan/CD-IC NF by SEM elucidated that the triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF were bead-free having average fiber diameter of 520±250nm and 1100±660nm, respectively. The presence of triclosan and the formation of triclosan/CD-IC within the fiber structure were confirmed by 1H-NMR, FTIR, XRD, DSC, and TGA studies. The initial 1:1molar ratio of the triclosan:CD was kept for triclosan/HPβCD-IC NF after the electrospinning and whereas 0.7:1molar ratio was observed for triclosan/HPγCD-IC NF and some uncomplexed triclosan was detected suggesting that the complexation efficiency of triclosan with HPγCD was lower than that of HPβCD. The antibacterial properties of triclosan/CD-IC NF were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. It was observed that triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF showed better antibacterial activity against both bacteria compared to uncomplexed pure triclosan.Item Open Access Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes(2013) Kayaci F.; Umu O.C.O.; Tekinay, T.; Uyar, T.Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by 1H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property. © 2013 American Chemical Society.Item Open Access Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning(American Chemical Society, 2016) Aytac Z.; Yildiz, Z. I.; Kayaci-Senirmak, F.; S. Keskin, N. O.; Kusku, S. I.; Durgun, Engin; Tekinay, T.; Uyar, TamerWe have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HPβCD, MβCD, and HPγCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was 1:1 for CD/limonene systems. MβCD/limonene-IC-NF released much more limonene at 37, 50, and 75 °C than HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF because of the greater amount of preserved limonene. Moreover, MβCD/limonene-IC-NF has released only 25% (w/w) of its limonene, whereas HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF released 51 and 88% (w/w) of their limonene in 100 days, respectively. CD/limonene-IC-NFs exhibited high antibacterial activity against E. coli and S. aureus. The water solubility of limonene increased significantly and CD/limonene-IC-NFs were dissolved in water in a few seconds. In brief, CD/limonene-IC-NFs with fast-dissolving character enhanced the thermal stability and prolonged the shelf life along with antibacterial properties could be quite applicable in food and oral care applications.Item Open Access One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers(Pergamon Press, 2014) Celebioglu A.; Aytac Z.; Umu, O. C. O.; Dana, A.; Tekinay, T.; Uyar, TamerOne-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.Item Open Access Simultaneous photoinduced electron transfer and photoinduced CuAAC processes for antibacterial thermosets(Elsevier, 2017) Oz, E.; Uyar, T.; Esen, H.; Tasdelen, M. A.A combination of simultaneous photoinduced electron transfer and photoinduced CuAAC processes enables the in-situ preparation of antibacterial thermosets containing silver nanoparticles (AgNPs) in one-pot. Upon photolysis of photoinitator, the generated radicals not only reduce Cu(II) into Cu(I) activator to catalyst the CuAAC click reaction, but also simultaneously generate AgNPs from AgNO3 through electron transfer reaction. Due to their reduction potentials difference, the polymer matrix is formed before the formation of AgNPs, assisting to eliminate the agglomeration of them. The thermoset structures are confirmed by FT-IR and solubility tests, whereas the presence of AgNPs is proven by transmission electron microscopy with energy dispersive X-ray system analyzer. The samples containing 5 and 10% AgNPs exhibited strong inhibition zones, where all kinds of bacteria (gram-positive (Staphylococcus Aureus) and gram-negative (Escherichia Coli)) were killed in the surrounding of the film samples.