BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Alpha smooth muscle actin"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Angiogenic peptide nanofibers improve wound healing in STZ-induced diabetic rats
    (American Chemical Society, 2016-06) Senturk, B.; Mercan, S.; Delibasi, T.; Güler, Mustafa O.; Tekinay, A. B.
    Low expressions of angiogenic growth factors delay the healing of diabetic wounds by interfering with the process of blood vessel formation. Heparin mimetic peptide nanofibers can bind to and enhance production and activity of major angiogenic growth factors, including VEGF. In this study, we showed that heparin mimetic peptide nanofibers can serve as angiogenic scaffolds that allow slow release of growth factors and protect them from degradation, providing a new therapeutic way to accelerate healing of diabetic wounds. We treated wounds in STZ-induced diabetic rats with heparin mimetic peptide nanofibers and studied repair of full-thickness diabetic skin wounds. Wound recovery was quantified by analyses of re-epithelialization, granulation tissue formation and blood vessel density, as well as VEGF and inflammatory response measurements. Wound closure and granulation tissue formation were found to be significantly accelerated in heparin mimetic gel treated groups. In addition, blood vessel counts and the expressions of alpha smooth muscle actin and VEGF were significantly higher in bioactive gel treated animals. These results strongly suggest that angiogenic heparin mimetic nanofiber therapy can be used to support the impaired healing process in diabetic wounds.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction
    (Acta Materialia Inc, 2017) Rufaihah, A. J.; Yasa, I. C.; Ramanujam, V. S.; Arularasu, S. C.; Kofidis, T.; Güler, Mustafa O.; Tekinay, A. B.
    Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. Statement of Significance We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular tissue after myocardial infarction in a rat infarct model. When the peptide nanofiber gels were injected in infarct site at rodent myocardial infarct model, recruitment of vascular cells was observed, neovascularization was significantly induced and cardiac performance was improved. These results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Apoptotic vascular smooth muscle cell depletion via BCL2 family of proteins in human ascending aortic aneurysm and dissection
    (Blackwell Publishing Ltd, 2012) Durdu, S.; Deniz, G. C.; Balci, D.; Zaim, C.; Dogan, A.; Can, A.; Akcali, K. C.; Akar, A. R.
    Aims: This study investigates the expression patterns of BCL2 (B-cell CLL/lymphoma2) family of proteins and the extent of vascular smooth muscle cell (VSMC) apoptosis in thoracic aortic aneurysms (TAA), type-A aortic dissections (TAD), and nondilated ascending aortic samples. Methods: Aortic wall specimens were obtained from patients undergoing surgical repair for TAA (n = 24), TAD (n = 20), and normal aortic tissues from organ donors (n = 6). The expression pattern of BCL2, BCL2L1 (BCL2-like1), BAK1 (BCL2-antagonist/killer1), and BAX (BCL2-associated X protein) proteins was investigated by immunohistochemistry. Furthermore, colocalization of alpha smooth muscle actin (ACTA2) and caspase3 (CASP3) in aortic VSMCs was analyzed by double-immunofluorescence staining. Onset of DNA fragmentation was measured by TUNEL assay. Results: Apoptotic index was significantly increased in both TAD group (31.3 ± 17.2, P < 0.001) and TAA group (21.1 ± 12.7, P = 0.001) relative to control aortas (2.0 ± 1.2). Anti-CASP3 and ACTA2 double-immunostaining confirmed apoptosis in VSMCs in TAA and TAD groups but not in controls. Proapoptotic BAX expression was significantly elevated in VSMCs of TAA patients, compared with that of controls (OR = 20; P = 0.02; 95% CI, 16-250). In contrast, antiapoptotic BCL2L1 expression was higher in controls compared with that of TAA group (OR = 11.2; P = 0.049; 95% CI, 1.0-123.9). Furthermore, BAX/BCL2 ratio was significantly increased in both TAA (1.2 ± 0.7, P < 0.001) and TAD (0.6 ± 0.4, P = 0.05) groups relative to controls (0.2 ± 0.1, P < 0.001). Conclusions: Apoptotic VSMC depletion in human TAA/TAD is associated with disturbance of the balance between proapoptotic and antiapoptotic members of the BCL2 family proteins, which may have a role in the pathogenesis of vascular remodelling in aortic disease. In light of the future studies, targeting apoptotic pathways in TAA and TAD pathogenesis may provide therapeutic benefits to patients by slowing down the progression and even possibly preventing the TAD. © 2012 Blackwell Publishing Ltd.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Diabetic wound regeneration using heparin-mimetic peptide amphiphile gel in db/db mice
    (Royal Society of Chemistry, 2017) Senturk, Berna; Demircan, Burak M.; Ozkan, Alper D.; Tohumeken, Sehmus; Delibasi, T.; Güler, Mustafa O.; Tekinay, Ayse B.
    There is an urgent need for more efficient treatment of chronic wounds in diabetic patients especially with a high risk of leg amputation. Biomaterials capable of presenting extracellular matrix-mimetic signals may assist in the recovery of diabetic wounds by creating a more conducive environment for blood vessel formation and modulating the immune system. In a previous study, we showed that glycosaminoglycan-mimetic peptide nanofibers are able to increase the rate of closure in STZ-induced diabetic rats by induction of angiogenesis. The present study investigates the effect of a heparin-mimetic peptide amphiphile (PA) nanofiber gel on full-thickness excisional wounds in a db/db diabetic mouse model, with emphasis on the ability of the PA nanofiber network to regulate angiogenesis and the expression of pro-inflammatory cytokines. Here, we showed that the heparin-mimetic PA gel can support tissue neovascularization, enhance the deposition of collagen and expression of alpha-smooth muscle actin (α-SMA), and eliminate the sustained presence of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the diabetic wound site. As the absence of neovascularization and overexpression of pro-inflammatory markers are a hallmark of diabetes and interfere with wound recovery by preventing the healing process, the heparin-mimetic PA treatment is a promising candidate for acceleration of diabetic wound healing by modulating angiogenesis and local immune response. © 2017 The Royal Society of Chemistry.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback