BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Towe, E."

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    100-GHz resonant cavity enhanced Schottky photodiodes
    (Institute of Electrical and Electronics Engineers, 1998) Onat, B. M.; Gökkavas, M.; Özbay, Ekmel; Ata, E. P.; Towe, E.; Ünlü, M. S.
    Resonant cavity enhanced (RCE) photodiodes are promising candidates for applications in optical communications and interconnects where ultrafast high-efficiency detection is desirable. We have designed and fabricated RCE Schottky photodiodes in the (Al, In) GaAs material system for 900-nm wavelength. The observed temporal response with 10-ps pulsewidth was limited by the measurement setup and a conservative estimation of the bandwidth corresponds to more than 100 GHz. A direct comparison of RCE versus conventional detector performance was performed by high speed measurements under optical excitation at resonant wavelength (895 nm) and at 840 nm where the device functions as a single-pass conventional photodiode. A more than two-fold bandwidth enhancement with the RCE detection scheme was demonstrated.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes
    (Institute of Electrical and Electronics Engineers, 1999-02) Gökkavas, M.; Onat, B. M.; Özbay, Ekmel; Ata, E. P.; Xu, J.; Towe, E.; Ünlü, M. S.
    Resonant cavity enhanced (RCE) photodiodes (PD's) are promising candidates for applications in optical communications and interconnects where high-speed high-efficiency photodetection is desirable. In RCE structures, the electrical properties of the photodetector remain mostly unchanged; however, the presence of the microcavity causes wavelength selectivity accompanied by a drastic increase of the optical field at the resonant wavelengths. The enhanced optical field allows to maintain a high efficiency for faster transit-time limited PD's with thinner absorption regions. The combination of an RCE detection scheme with Schottky PD's allows for the fabrication of high-performance photodetectors with relatively simple material structures and fabrication processes. In top-illuminated RCE Schottky PD's, a semitransparent Schottky contact can also serve as the top reflector of the resonant cavity. We present theoretical and experimental results on spectral and high-speed properties of GaAs-AlAs-InGaAs RCE Schottky PD's designed for 900-nm wavelength.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fabrication of high-speed resonant cavity enhanced schottky photodiodes
    (Institute of Electrical and Electronics Engineers, 1997-05) Özbay, Ekmel; Islam, M. S.; Onat, B.; Gökkavas, M.; Aytür, O.; Tuttle, G.; Towe, E.; Henderson, R. H.; Ünlü, M. S.
    We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The top-illuminated RCE detector is constructed by integrating a Schottky contact, a thin absorption region (In0.8Ga0.92As) and a distributed AlAs-GaAs Bragg mirror. The Schottky contact metal serves as a high-reflectivity top mirror in the RCE detector structure. The devices were fabricated by using a microwave-compatible fabrication process. The resulting spectral photo response had a resonance around 895 nm, in good agreement with our simulations. The full-width-at-half-maximum (FWHM) was 15 nm, and the enhancement factor was in excess of 6. The photodiode had an experimental setup limited temporal response of 18 ps FWHM, corresponding to a 3-dB bandwidth of 20 GHz.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High-speed high-efficiency resonant cavity enhanced photodiodes
    (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, United States, 1999) Özbay, Ekmel; Kimukin, I.; Bıyıklı, N.; Aytür, O.; Gökkavas, M.; Ulu, G.; Ünlü, M. S.; Mirin, R. P.; Bertness, K. A.; Christensen, D. H.; Towe, E.; Tuttle, G.
    In this paper, we review our research efforts on RCE high-speed high-efficiency p-i-n and Schottky photodiodes. Using a microwave compatible planar fabrication process, we have designed and fabricated GaAs based RCE photodiodes. For RCE Schottky photodiodes, we have achieved a peak quantum efficiency of 50% along with a 3-dB bandwidth of 100 GHz. The tunability of the detectors via a recess etch is also demonstrated. For p-i-n type photodiodes, we have fabricated and tested widely tunable devices with near 100% quantum efficiencies, along with a 3-dB bandwidth of 50 GHz. Both of these results correspond to the fastest RCE photodetectors published in scientific literature.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback