Browsing by Author "Sun X.W."
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access AC-driven, color-and brightness-tunable organic light-emitting diodes constructed from an electron only device(2013) Zhao, Y.; Chen, R.; Gao, Y.; Leck, K.S.; Yang X.; Liu, S.; Abiyasa, A.P.; Divayana, Y.; Mutlugun, E.; Tan, S.T.; Sun H.; Demir, Hilmi Volkan; Sun X.W.In this paper, a color- and brightness-tunable organic light-emitting diode (OLED) is reported. This OLED was realized by inserting a charge generation layer into an electron only device to form an n-i-p-i-n structure. It is shown that, by changing the polarity of applied voltage, only the p-i-n junction operated under positive bias can emit light and, by applying an AC voltage, emission from both junctions was realized. It is also shown that, by using a combination of blue- and red-emiting layers in two p-i-n junctions, both the color and brightness of the resulting white OLED can be tuned independently by changing the positive and negative amplitudes of the AC voltage. © 2013 Elsevier B.V. All rights reserved.Item Open Access Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers(American Chemical Society, 2014) Yang X.; Mutlugun, E.; Dang, C.; Dev, K.; Gao, Y.; Tan, S.T.; Sun X.W.; Demir, Hilmi VolkanFlexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20 000 cd/m2 and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting. © 2014 American Chemical Society.Item Open Access Highly flexible, full-color, top-emitting quantum dot light-emitting diode tapes(IEEE, 2013) Yang X.; Mutlugün, Evren; Gao, Y.; Zhao, Y.; Tan, S.T.; Sun X.W.; Demir, Hilmi VolkanWe report flexible tapes of high-performance, top-emitting, quantum dot based, light-emitting diodes (QLEDs) with multicolor emission, actively working even when flexed. The resulting QLED tapes reach a high peak luminance level of 19,265 cd/m2. © 2013 IEEE.Item Open Access Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer(Optical Society of American (OSA), 2013) Zhang, Z.-H.; Tan, S.T.; Liu W.; Ju, Z.; Zheng, K.; Kyaw, Z.; Ji, Y.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanThis work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced. © 2013 Optical Society of America.Item Open Access Low thermal-mass LEDs: Size effect and limits(Optical Society of American (OSA), 2014) Lu, S.; Liu W.; Zhang, Z.-H.; Tan, S.T.; Ju, Z.; Ji, Y.; Zhang X.; Zhang, Y.; Zhu, B.; Kyaw, Z.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanIn this work, low thermal-mass LEDs (LTM-LEDs) were developed and demonstrated in flip-chip configuration, studying both experimentally and theoretically the enhanced electrical and optical characteristics and the limits. LTM-LED chips in 25 × 25 μm2, 50 × 50 μm2, 100 × 100 μm2 and 200 × 200 μm2 mesa sizes were fabricated and comparatively investigated. Here it was revealed that both the electrical and optical properties are improved by the decreasing chip size due to the reduced thermal mass. With a smaller chip size (from 200 μm to 50 μm), the device generally presents higher current density against the bias and higher power density against the current density. However, the 25 × 25 μm2 device behaves differently, limited by the fabrication margin limit of 10 μm. The underneath mechanisms of these observations are uncovered, and furthermore, based on the device model, it is proven that for a specific flip-chip fabrication process, the ideal size for LTM-LEDs with optimal power density performance can be identified. ©2014 Optical Society of AmericaItem Open Access Nanocrystal LEDs with enhanced external quantum efficiency enabled by the use of phosphorescent molecules(IEEE, 2013) Mutlugün, Evren; Abiyasa, A.P.; Güzeltürk, Burak; Gao, Y.; Leck, K.S.; Sun X.W.; Demir, Hilmi VolkanWe report efficiency enhancement in quantum dot (QD) based LEDs with the aid of excitonic energy transfer from co-doped TCTA:Ir(ppy)3 layer to CdSe/ZnS QDs while providing spectrally pure emission. © 2013 IEEE.Item Open Access Nonradiative recombination-Critical in choosing quantum well number for InGaN/GaN light-emitting diodes(Optical Society of American (OSA), 2015) Zhang, Y.P.; Zhang, Z.-H.; Liu W.; Tan, S.T.; Ju, Z.G.; Zhang X.L.; Ji, Y.; Wang L.C.; Kyaw, Z.; Hasanov, N.; Zhu, B.B.; Lu, S.P.; Sun X.W.; Demir, Hilmi VolkanIn this work, InGaN/GaN light-emitting diodes (LEDs) possessing varied quantum well (QW) numbers were systematically investigated both numerically and experimentally. The numerical computations show that with the increased QW number, a reduced electron leakage can be achieved and hence the efficiency droop can be reduced when a constant Shockley-Read-Hall (SRH) nonradiative recombination lifetime is used for all the samples. However, the experimental results indicate that, though the efficiency droop is suppressed, the LED optical power is first improved and then degraded with the increasing QW number. The analysis of the measured external quantum efficiency (EQE) with the increasing current revealed that an increasingly dominant SRH nonradiative recombination is induced with more epitaxial QWs, which can be related to the defect generation due to the strain relaxation, especially when the effective thickness exceeds the critical thickness. These observations were further supported by the carrier lifetime measurement using a pico-second time-resolved photoluminescence (TRPL) system, which allowed for a revised numerical modeling with the different SRH lifetimes considered. This work provides useful guidelines on choosing the critical QW number when designing LED structures. © 2014 Optical Society of America.Item Open Access A PN-type quantum barrier for InGaN/GaN light emitting diodes(Optical Society of American (OSA), 2013) Zhang, Z.-H.; Tan, S.T.; Ji, Y.; Liu W.; Ju, Z.; Kyaw, Z.; Sun X.W.; Demir, Hilmi VolkanIn this work, InGaN/GaN light-emitting diodes (LEDs) with PN-type quantum barriers are comparatively studied both theoretically and experimentally. A strong enhancement in the optical output power is obtained from the proposed device. The improved performance is attributed to the screening of the quantum confined Stark effect (QCSE) in the quantum wells and improved hole transport across the active region. In addition, the enhanced overall radiative recombination rates in the multiple quantum wells and increased effective energy barrier height in the conduction band has substantially suppressed the electron leakage from the active region. Furthermore, the electrical conductivity in the proposed devices is improved. The numerical and experimental results are in excellent agreement and indicate that the PN-type quantum barriers hold great promise for high-performance InGaN/GaN LEDs. © 2013 Optical Society of America.Item Open Access Room-temperature larger-scale highly ordered nanorod imprints of ZnO film(Optical Society of American (OSA), 2013) Kyaw, Z.; Wang J.; Dev, K.; Tiam Tan, S.; Ju, Z.; Zhang, Z.-H.; Ji, Y.; Hasanov, N.; Liu W.; Sun X.W.; Demir, Hilmi VolkanRoom-temperature large-scale highly ordered nanorod-patterned ZnO films directly integrated on III-nitride light-emitting diodes (LEDs) are proposed and demonstrated via low-cost modified nanoimprinting, avoiding a high-temperature process. with a 600 nm pitch on top of a critical 200 nm thick Imprinting ZnO nanorods of 200 nm in diameter and 200 nm in height continuous ZnO wetting layer, the light output power of the resulting integrated ZnO-nanorod-film/semi- transparent metal/GaN/InGaN LED shows a two-fold enhancement (100% light extraction efficiency improvement) at the injection current of 150 mA, in comparison with the conventional LED without the imprint film. The increased optical output is well explained by the enhanced light scattering and outcoupling of the ZnOrod structures along with the wetting film, as verified by the numerical simulations. The wetting layer is found to be essential for better impedance matching. The current-voltage characteristics and electroluminescence measurements confirm that there is no noticeable change in the electrical or spectral properties of the final LEDs after ZnO-nanorod film integration. These results suggest that the low-cost high-quality large-scale ZnOnanorod imprints hold great promise for superior LED light extraction. ©2013 Optical Society of America.Item Open Access Singlet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Molecules(American Chemical Society, 2014) Guzelturk, B.; Hernandez Martinez P.L.; Zhao, D.; Sun X.W.; Demir, Hilmi VolkanEfficient nonradiative energy transfer is reported in an inorganic/organic thin film that consists of a CdSe/ZnS core/shell colloidal quantum dot (QD) layer interfaced with a phosphorescent small organic molecule (FIrpic) codoped fluorescent host (TCTA) layer. The nonradiative energy transfer in these thin films is revealed to have a cascaded energy transfer nature: first from the fluorescent host TCTA to phosphorescent FIrpic and then to QDs. The nonradiative energy transfer in these films enables very efficient singlet and triplet state harvesting by the QDs with a concomitant fluorescence enhancement factor up to 2.5-fold, while overall nonradiative energy transfer efficiency is as high as 95%. The experimental results are successfully supported by the theoretical energy transfer model developed here, which considers exciton diffusion assisted Förster-type near-field dipole-dipole coupling within the hybrid films. © 2014 American Chemical Society.Item Open Access Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering(2010) Nizamoglu, S.; Erdem, T.; Sun X.W.; Demir, Hilmi VolkanWarm-white LEDs (WLEDs) with high spectral quality and efficiency are required for lighting applications, but current experimental performances are limited. We report on nanocrystal quantum dot (NQD) hybridized WLEDs with high performance that exhibit a high luminous efficacy of optical radiation exceeding 350 lm/Wopt and a high color rendering index close to 90 at a low correlated color temperature <3000 K. These spectrally engineered WLEDs are obtained using a combination of CdSe/ZnS core/shell NQD nanophosphors integrated on blue InGaN/GaN LEDs. © 2010 Optical Society of America.Item Open Access Warm-White light-Emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering: Reply to comment(2011) Nizamoglu, S.; Erdem, T.; Sun X.W.; Demir, Hilmi VolkanThe correlated color temperatures and the corresponding color rendering indices calculated using actual experimental data (and not any prediction) in the original Letter [Opt. Lett. 35, 3372 (2010)] are correct. In addition, here the color rendering of our white LEDs integrated with nanocrystal quantum dots (NQDs) is provided for all test samples. Also, a new NQD-LED design with both high luminous efficacy of optical radiation and CRI is presented to have a chromaticity point in the quadrangle stated in the comment Letter [Opt. Lett. 36, 2851 (2011)]. The points made in the original Letter and all the calculation results provided therein are valid. © 2011 Optical Society of America.