Browsing by Author "Muti, Abdullah"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Atomic layer deposited Al 2O 3 passivation of type II InAs/GaSb superlattice photodetectors(AIP, 2012) Salihoğlu, Ömer; Muti, Abdullah; Kutluer, Kutlu; Tansel, T.; Turan, R.; Kocabaş, Coşkun; Aydınlı, AtillaTaking advantage of the favorable Gibbs free energies, atomic layer deposited (ALD) aluminum oxide (Al 2O 3) was used as a novel approach for passivation of type II InAs/GaSb superlattice (SL) midwave infrared (MWIR) single pixel photodetectors in a self cleaning process (λ cut-off ∼ 5.1 m). Al 2O 3 passivated and unpassivated diodes were compared for their electrical and optical performances. For passivated diodes, the dark current density was improved by an order of magnitude at 77 K. The zero bias responsivity and detectivity was 1.33 A/W and 1.9 × 10 13 Jones, respectively at 4μm and 77 K. Quantum efficiency (QE) was determined as 41 for these detectors. This conformal passivation technique is promising for focal plane array (FPA) applications. © 2012 American Institute of Physics.Item Open Access Dark current control in InAs/GaSb superlattice photodetectors(2013) Muti, AbdullahBose-Einstein Condensation (BEC) was introduced by Einstein 1925. It took 70 years to confirm BEC by experiments. BEC creates a suitable environment to observe macroscopic-quantum behavior. Condensates consist of ultracold atoms allow physicists to create superfluids and also they allow to manipulate these quantum structures easily. One of the main tool needed to manipulate these structures is synthetic magnetic field. Under the light of these experimental achievements we studied the angular momentum transfer in the N-body systems. First of all, to develop physical intuition, we solved 2-body problem. This problem can be defined as: The system consist of two particles and confined in a ring. Particles interact with each other and charged one coupled to the magnetic field. We used two approaches to solve the system and compared these approaches in the small limit of inter-particle interaction. Finally, we studied N-body systems and vortex transfer in the two-component superfluid mixtures via Gross-Pitaevski equation and Bogoulibov equations. We observed that for various parameters neutral-neutral mixtures do not possess vortex transfer, yet charged-neutral mixtures coupled to the magnetic field experience vortex transfer.Item Open Access Low dark current N structure superlattice MWIR photodetectors(SPIE, 2014) Salihoğlu, O.; Muti, Abdullah; Turan, R.; Ergun, Y.; Aydınlı, AtillaCommercially available read out integrated circuits (ROICs) require the FPA to have high dynamic resistance area product at zero bias (R0A) which is directly related to dark current of the detector. Dark current arises from bulk and surface contributions. Recent band structure engineering studies significantly suppressed the bulk contribution of the type-II superlattice infrared photodetectors (N structure, M structure, W structure). In this letter, we will present improved dark current results for unipolar barrier complex supercell superlattice system which is called as "N structure". The unique electronic band structure of the N structure increases electron-hole overlap under bias, significantly. N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Despite the difficulty of perfect lattice matching of InAs and AlSb, such a design is expected to reduce dark current. Experiments were carried out on Single pixel with mesa sizes of 100 × 100 - 700 × 700 μm photodiodes. Temperature dependent dark current with corresponding R0A resistance values are reported.Item Open Access Low-frequency noise behavior at reverse bias region in InAs/GaSb superlattice photodiodes on mid-wave infrared(SPIE, 2013) Tansel, T.; Kutluer, K.; Muti, Abdullah; Salihoğlu, Ömer; Aydınlı, Atilla; Turan, R.We describe a relationship between the noise characterization and activation energy of InAs/GaSb superlattice Mid- Wavelength-Infrared photodiodes for different passivation materials applied to the device. The noise measurements exhibited a frequency dependent plateau (i.e. 1/f-noise characteristic) for unpassivated as well as Si3N4 passivated samples whereas 1/f-type low noise suppression (i.e. frequency independent plateau) with a noise current reduction of more than one order of magnitude was observed for SiO2 passivation. For reverse bias values below -0.15V, the classical Schottky-noise calculation alone did not appear to describe the noise mechanism in a SL noise behavior, which shows a divergence between theoretically and experimentally determined noise values. We identify that, the additional noise appears, with and without passivation, at the surface activation energy of < 60 meV and is inversely proportional to the reverse bias. This is believed to be caused by the surface dangling-bonds (as well as surface states) whose response is controlled by the applied reverse bias. The calculated noise characteristics showed a good agreement with the experimental data. © 2013 SPIE.Item Open Access Passivation of type II InAs / GaSb superlattice photodetectors with atomic layer deposited Al2O3(SPIE, 2012) Salihoğlu, Ömer; Muti, Abdullah; Kutluer, K.; Tansel, T.; Turan, R.; Kocabaş, Coşkun; Aydınlı, AtillaWe have achieved significant improvement in the electrical performance of the InAs/GaSb midwave infrared photodetector (MWIR) by using atomic layer deposited (ALD) aluminium oxide (Al2O3) as a passivation layer. Plasma free and low operation temperature with uniform coating of ALD technique leads to a conformal and defect free coverage on the side walls. This conformal coverage of rough surfaces also satisfies dangling bonds more efficiently while eliminating metal oxides in a self cleaning process of the Al2O3 layer. Al2O3 passivated and unpassivated diodes were compared for their electrical and optical performances. For passivated diodes the dark current density was improved by an order of magnitude at 77 K. The zero bias responsivity and detectivity was 1.33 A/W and 1.9 x 1013 Jones, respectively at 4 µm and 77 K. Quantum efficiency (QE) was determined as %41 for these detectors.Item Open Access Thiol passivation of MWIR Type II superlattice photodetectors(SPIE, 2013) Salihoğlu, Ömer; Muti, Abdullah; Aydınlı, AtillaPoor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation. © 2013 SPIE.