Dark current control in InAs/GaSb superlattice photodetectors
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Series
Abstract
Bose-Einstein Condensation (BEC) was introduced by Einstein 1925. It took 70 years to confirm BEC by experiments. BEC creates a suitable environment to observe macroscopic-quantum behavior. Condensates consist of ultracold atoms allow physicists to create superfluids and also they allow to manipulate these quantum structures easily. One of the main tool needed to manipulate these structures is synthetic magnetic field. Under the light of these experimental achievements we studied the angular momentum transfer in the N-body systems. First of all, to develop physical intuition, we solved 2-body problem. This problem can be defined as: The system consist of two particles and confined in a ring. Particles interact with each other and charged one coupled to the magnetic field. We used two approaches to solve the system and compared these approaches in the small limit of inter-particle interaction. Finally, we studied N-body systems and vortex transfer in the two-component superfluid mixtures via Gross-Pitaevski equation and Bogoulibov equations. We observed that for various parameters neutral-neutral mixtures do not possess vortex transfer, yet charged-neutral mixtures coupled to the magnetic field experience vortex transfer.