Browsing by Author "Ilday, F. O."
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery(AIP Publishing LLC, 2012-03-06) Lanin, A.; Fedotov, I. V.; Sidorov Biryukov, D. S.; Doronina Amitonova, L. V.; Ivashkina, O. I.; Zots, M. A.; Sun, C. K.; Ilday, F. O.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.Large-core hollow photonic- crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-mu m-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.Item Open Access Application of a mode-locked fiber laser for highly time resolved broadband absorption spectroscopy and laser-assisted breakdown on micro-plasmas(IOP Publishing, 2012-05-29) Niermann, B.; Budunoglu, I. L.; Gurel, K.; Boke, M.; Ilday, F. O.; Winter, J.Absorption spectroscopy is known to be a powerful tool to gain spatially and temporally resolved information on excited and reactive species in a plasma discharge. Furthermore, the interaction of the discharge with short intense laser pulses can trigger the ignition and the transition into other transient states of the plasma. In this context laser-assisted 'pump-probe' experiments involving simultaneously generated supercontinuum radiation yield highly temporally resolved and spatially well-defined information on the transient phenomena. In this paper we demonstrate the possibility for 'pump-probe' experiments by initiating breakdown on a picosecond time scale ('pump') with a high-power beam and measuring the broadband absorption with the simultaneously provided supercontinuum ('probe'). Since both pulses are generated from the same mode-locked master oscillator, they have a strong level of synchronization.Item Open Access Demonstration of a cavity-enhanced optical parametric chirped-pulse amplification system(Optical Society of America, 2011-03-28) Siddiqui, A.; Hong, K. H.; Moses, J.; Chen, J.; Ilday, F. O.; Kartner, F. X.The use of a low finesse enhancement cavity resonant with a low average power (< 1W) and a high repetition rate (78MHz) pump source is shown to achieve 55% conversion efficiency into signal and idler from the coupled pump in an optical parametric process, whereas an equivalent amount of pump power in a single-pass configuration leads to negligible conversion. Careful comparison of the intracavity conversion process to the single-pass case is performed to assess the underlying impedance matching that yields the high conversion results.Item Open Access Development of a fiber laser with independently adjustable properties for optical resolution photoacoustic microscopy(Nature Publishing Group, 2016) Aytac-Kipergil, E.; Demirkiran, A.; Uluc, N.; Yavas, S.; Kayikcioglu, T.; Salman, S.; Karamuk, S. G.; Ilday, F. O.; Unlu, M.B.Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5-10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies.Item Open Access Development of a rapid-scan fiber-integrated terahertz spectrometer(Springer New York LLC, 2014) Keskin, H.; Altan, H.; Yavas, S.; Ilday, F. O.; Eken, K.; Sahin, A. B.Scientists in terahertz (THz) wave technologies have benefited from the recent developments in ultrafast laser technologies and RF technologies and applied these new gained techniques into characterizing a wide variety of phenomena. Undoubtedly, the most successful of these applications has been in the development of time-domain terahertz spectroscopic and imaging systems which has been utilized in the characterization of dielectrics and semiconductors. This pulsed technique has allowed users to characterize dynamical behavior inside materials under illumination with picosecond resolution. Typically pump/probe or similar dynamical measurements require the use of amplified pulses derived from free-space solid state lasers in the μJ-mJ range and since interferometric techniques are typically used in pulsed measurements the measurement time of a THz spectrum can last at least tens of minutes. Better systems can be realized based on fiber laser technologies. Here we discuss the advantages of a THz spectrometer driven by an ultrafast Ytterbium doped fiber laser whose repetition rate can be tuned rapidly allowing for rapid dynamical measurements. The efficient gain medium, robust operation and compact design of the system opens up the possibility of exploring rapid detection of various materials as well as studying dynamical behavior using the high brightness source.Item Open Access Diffraction-limited, 10-W, 5-ns, 100-kHz, all fiber laser at 1.55 um(Optical Society of America, 2014-04-25) Pavlov, I.; Dulgergil, E.; Ilbey, E.; Ilday, F. O.This Letter reports on an all-fiber-integrated master-oscillator, power amplifier system at 1.55 mu m producing 5-ns, 100-mu J pulses. These pulses are generated at a 100 kHz repetition rate, corresponding to 10 W of average power. The seed source is a low-power, current-modulated, single-frequency, distributed feedback semiconductor laser. System output is obtained from a standard single-mode fiber (Corning SMF-28). Consequently, the beam is truly diffraction limited, which was independently proven by M-2 measurements. Further increase of peak power is limited by onset of significant spectral broadening due to nonlinear effects, primarily four-wave mixing. Numerical simulations based on six-level rate equations with full position-and time-dependence were developed to model propagation of pulses through the amplifier chain. This capability allows minimization of the amplified spontaneous emission, which can be directly measured using a fast acousto-optic modulator to gate the pulses. (C) 2014 Optical Society of AmericaItem Open Access Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2015(OSA - The Optical Society, 2016) Gallo K.; Jeong Y.; Taira T.; Jiang S.; Ilday, F. O.The editors introduce the focus issue on "Advanced Solid-State Lasers (ASSL) 2015", which is based on the topics presented at a congress of the same name held in Berlin, Germany, from October 4 to October 9, 2015. This focus issue, jointly prepared by Optics Express and Optical Materials Express, includes 23 contributed papers (17 for Optics Express and 6 for Optical Materials Express) selected from the voluntary submissions from attendees who presented at the congress and have extended their work into complete research articles. We hope this focus issue offers a good snapshot of a variety of topical discussions held at the congress and will contribute to the further expansion of the associated research areas. © 2016 Optical Society of America.Item Open Access Generation of picosecond pulses directly from a 100 W, burst-mode, doping-managed Yb-doped fiber amplifier(Optical Society of America, 2014) Elahi, P.; Yilmaz, S.; Eldeniz, Y. B.; Ilday, F. O.Burst-mode laser systems offer increased effectiveness in material processing while requiring lower individual pulse energies. Fiber amplifiers operating in this regime generate low powers in the order of 1 W. We present a Yb-doped fiber amplifier, utilizing doping management, that scales the average power up to 100 W. The laser system produces bursts at 1 MHz, where each burst comprises 10 pulses with 10 mu J energy per pulse and is separated in time by 10 ns. The high-burst repetition rate allows substantial simplification of the setup over previous demonstrations of burst-mode operation in fiber lasers. The total energy in each burst is 100 mu J and the average power achieved within the burst is 1 kW. The pulse evolution in the final stage of amplification is initiated as self-similar amplification, which is quickly altered as the pulse spectrum exceeds the gain bandwidth. By prechirping the pulses launched into the amplifier, 17 ps long pulses are generated without using external pulse compression. The peak power of the pulses is similar to 0.6 MW. (C) 2014 Optical Society of AmericaItem Open Access High-power-high-repetition-rate-single-mode Er-Yb-doped fiber laser system(Optical Society of America, 2012) Pavlov, I.; Ilbey, E.; Dulgergil, E.; Bayri, A.; Ilday, F. O.We demonstrate an all-fiber-integrated, high-power chirped-pulse-amplification system operating at 1550 nm. The seed source is a soliton fiber laser with 156 MHz repetition rate. Two-stage single mode amplifier provides an amplification of more than 40 dB without significant spontaneous amplified emission. The power amplifier is based on cladding-pumped 10 mu m-core Er-Yb co-doped fiber, the output of which was spliced into standard singlemode fiber. We obtain 10 W average power in a strictly singlemode operation. After dechirping with a grating compressor, near transform-limited, 450 fs-long pulses are obtained. The laser source exhibits excellent short and long-term intensity stability, with relative intensity noise measurements characterizing the short-term stability. (C) 2012 Optical Society of AmericaItem Open Access Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression(Optical Society of America, 2009) Moses, J.; Huang, S. W.; Hong, K. H.; Mucke, O. D.; Falcao Filho, E. L.; Benedick, A.; Ilday, F. O.; Dergachev, A.; Bolger, J. A.; Eggleton, B. J.; Kärtner, F. X.We present a 9 GW peak power, three-cycle, 2.2 mu m optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling. (C) 2009 Optical Society of AmericaItem Open Access Multiscale self-asssembly of silicon quantum dots into an anisotropic three-dimensional random network(American Chemical Society, 2016) Ilday, S.; Ilday, F. O.; Hübner R.; Prosa, T. J.; Martin, I.; Nogay, G.; Kabacelik, I.; Mics, Z.; Bonn, M.; Turchinovich, D.; Toffoli, H.; Toffoli, D.; Friedrich, D.; Schmidt, B.; Heinig, K.-H.; Turan, R.Multiscale self-assembly is ubiquitous in nature but its deliberate use to synthesize multifunctional three-dimensional materials remains rare, partly due to the notoriously difficult problem of controlling topology from atomic to macroscopic scales to obtain intended material properties. Here, we propose a simple, modular, noncolloidal methodology that is based on exploiting universality in stochastic growth dynamics and driving the growth process under far-from-equilibrium conditions toward a preplanned structure. As proof of principle, we demonstrate a confined-but-connected solid structure, comprising an anisotropic random network of silicon quantum-dots that hierarchically self-assembles from the atomic to the microscopic scales. First, quantum-dots form to subsequently interconnect without inflating their diameters to form a random network, and this network then grows in a preferential direction to form undulated and branching nanowire-like structures. This specific topology simultaneously achieves two scale-dependent features, which were previously thought to be mutually exclusive: good electrical conduction on the microscale and a bandgap tunable over a range of energies on the nanoscale. © 2016 American Chemical Society.Item Open Access Nonlinear laser lithography to control surface properties of stainless steel(Elsevier BV, 2015) Orazi, L.; Gnilitskyi, I.; Pavlov, I.; Serro, A. P.; Ilday, S.; Ilday, F. O.In the present work a novel method to improve the surface properties of stainless steel is presented and discussed. The method, based on the use of a high repetition rate femtosecond Yb fibre laser, permits generation of highly reproducible, robust, uniform and periodic nanoscale structures over a large surface area. The technique is characterized by high productivity, which, in its most simple form, does not require special environmental conditioning. Surface morphology is scrutinized through SEM and AFM analyses and wettability behaviour is investigated by means of the sessile drop method using distilled-deionized water. It is shown that optimization of process parameters promotes anisotropic wetting behaviour of the material surface.Item Open Access Pulse shaping for a long-distance optical synchronization system(Denshi Jouhou Tsuushin Gakkai, Institute of Electronics Information and Communication Engineer, 2007) Ilday, F. O.; Winter, A.; Kärtner, F. X.; Danailov, M. B.Next generation free electron lasers aim to generate x-ray pulses with pulse durations down to 30 fs, and possibly even sub-fs. Synchronization of various stages of the accelerator and the probe laser system to the x-ray pulses with stability on the order of the pulse width is necessary to make maximal use of this capability. We are developing an optical timing synchronization system in order to meet this challenge. The scheme is based on generating a train of short optical pulses, with a precise repetition frequency, from a mode-locked laser oscillator and distributed via length-stabilized optical fibers to points requiring synchronization. The timing information is embedded in the repetition frequency and its harmonics. A significant advantage of the optical synchronization system is that multiple mode-locked Ti:sapphire seed oscillators typically present in an accelerator facility can be replaced by the master mode-locked fiber laser. In this paper, we briefly review progress on the development of the synchronization system and then discuss the implementation of this new possibility. Several technical issues related to this approach are analyzed.Item Open Access Semi-analytic theory self-similar optical propagation and mode-locking using a shape-adaptive model pulse(American Physical Society, 2014-01-21) Jirauschek, C.; Ilday, F. O.A semianalytic theory for the pulse dynamics in similariton amplifiers and lasers is presented, based on a model pulse with adaptive shape. By changing a single parameter, this test function can be continuously tweaked between a pure Gaussian and a pure parabolic profile and can even represent sech-like pulses, the shape of a soliton. This approach allows us to describe the pulse evolution in the self-similar and other regimes of optical propagation. Employing the method of moments, the evolution equations for the characteristic pulse parameters are derived from the governing nonlinear Schrodinger or Ginzburg-Landau equation. Due to its greatly reduced complexity, this description allows for extensive parameter optimization, and can aid intuitive understanding of the dynamics. As an application of this approach, we model a soliton-similariton laser and validate the results against numerical simulations. This constitutes a semianalytic model of the soliton-similariton laser. Due to the versatility of the model pulse, it can also prove useful in other application areas.