Browsing by Author "Finstad, T. G."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Charge retention in quantized energy levels of nanocrystals(Elsevier B.V., 2007) Dâna, A.; Akça, I.; Ergun, O.; Aydınlı, Atilla; Turan, R.; Finstad, T. G.Understanding charging mechanisms and charge retention dynamics of nanocrystal (NC) memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium NCs embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of NCs and that the decay is dominated by direct tunnelling. Discharge rates are calculated using the theoretical model for different NC sizes and densities and are compared with experimental data. Experimental results agree well with the proposed model and suggest that charge is indeed stored in the quantized energy levels of the NCs.Item Open Access A figure of merit for optimization of nanocrystal flash memory design(2008) Dâna, A.; Akca, I.; Aydınlı, Atilla; Turan, R.; Finstad, T. G.Nanocrystals can be used as storage media for carriers in flash memories. The performance of a nanocrystal flash memory depends critically on the choice of nanocrystal size and density as well as on the choice of tunnel dielectric properties. The performance of a nanocrystal memory device can be expressed in terms of write/erase speed, carrier retention time and cycling durability. We present a model that describes the charge/discharge dynamics of nanocrystal flash memories and calculate the effect of nanocrystal, gate, tunnel dielectric and substrate properties on device performance. The model assumes charge storage in quantized energy levels of nanocrystals. Effect of temperature is included implicitly in the model through perturbation of the substrate minority carrier concentration and Fermi level. Because a large number of variables affect these performance measures, in order to compare various designs, a figure of merit that measures the device performance in terms of design parameters is defined as a function of write/erase/discharge times which are calculated using the theoretical model. The effects of nanocrystal size and density, gate work function, substrate doping, control and tunnel dielectric properties and device geometry on the device performance are evaluated through the figure of merit. Experimental data showing agreement of the theoretical model with the measurement results are presented for devices that has PECVD grown germanium nanocrystals as the storage media. CopyrightItem Open Access Growth of Ge nanoparticles on SiO2 / Si interfaces during annealing of plasma enhanced chemical vapor deposited thin films(Elsevier B.V., 2007) Foss, S.; Finstad, T. G.; Dana, A.; Aydınlı, AtillaMultilayer germanosilicate (Ge:SiO2) films have been grown by plasma enhanced chemical vapor deposition. Each Ge:SiO2 layer is separated by a pure SiO2 layer. The samples were heat treated at 900 °C for 15 and 45 min. Transmission electron microscopy investigations show precipitation of particles in the layers of highest Ge concentration. Furthermore there is evidence of diffusion between the layers. This paper focuses mainly on observed growth of Ge particles close to the interface, caused by Ge diffusion from the Ge:SiO2 layer closest to the interface through a pure SiO2 layer and to the interface. The particles grow as spheres in a direction away from the interface. Particles observed after 15 min anneal time are 4 nm in size and are amorphous, while after 45 min anneal time they are 7 nm in size and have a crystalline diamond type Ge structure.Item Open Access Matrix density effect on morphology of germanium nanocrystals embedded in silicon dioxide thin films(Materials Research Society, 2011) Alagoz, A. S.; Genisel, M. F.; Foss, Steinar; Finstad, T. G.; Turan, R.Flash type electronic memories are the preferred format in code storage at complex programs running on fast processors and larger media files in portable electronics due to fast write/read operations, long rewrite life, high density and low cost of fabrication. Scaling limitations of top-down fabrication approaches can be overcome in next generation flash memories by replacing continuous floating gate with array of nanocrystals. Germanium (Ge) is a good candidate for nanocrystal based flash memories due its small band gap. In this work, we present effect of silicon dioxide (SiO 2) host matrix density on Ge nanocrystals morphology. Low density Ge+SiO 2 layers are deposited between high density SiO 2 layers by using off-angle magnetron sputter deposition. After high temperature post-annealing, faceted and elongated Ge nanocrystals formation is observed in low density layers. Effects of Ge concentration and annealing temperature on nanocrystal morphology and mean size were investigated by using transmission electron microscopy. Positive correlation between stress development and nanocrystal size is observed at Raman spectroscopy measurements. We concluded that non-uniform stress distribution on nanocrystals during growth is responsible from faceted and elongated nanocrystal morphology.Item Open Access Raman and TEM studies of Ge nanocrystal formation in SiOx: Ge/SiOx multilayers(Wiley, 2007) Dana, Aykutlu; Aǧan, S.; Tokay, S.; Aydınlı, Atilla; Finstad, T. G.Alternating germanosilicate-siliconoxide layers of 10-30 nm thickness were grown on Si substrates by plasma enhanced chemically vapor deposition (PECVD). The compositions of the grown films were determined by X-ray photoelectron spectroscopy measurements. The films were annealed at temperatures varying from 670 to 1000°C for 5 to 45 minutes under nitrogen atmosphere. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive X-ray analysis (EDAX) data confirm presence of Ge nanocrystals in each layer. The effect of annealing on the Ge nanocrystal formation in multilayers was investigated by Raman spectroscopy and Transmission Electron Microscopy (TEM). As the annealing temperature is raised to 850°C, single layer of Ge nanocrystals observed at lower annealing temperatures is transformed into a double layer with the smaller sized nanocrystals closer to the substrate SiO2 interface.Item Open Access Spectroscopic ellipsometric study of Ge nanocrystals embedded in SiO 2 using parametric models(Wiley, 2008-05) Basa, P.; Petrik, P.; Fried, M.; Dâna, Aykutlu; Aydınlı, Atilla; Foss, S.; Finstad, T. G.Ge-rich SiO2 layers on top of Si substrates were deposited using plasma enhanced chemical vapour deposition. Ge nanocrystals embedded in the SiO2 layers were formed by high temperature annealing. The samples were measured and evaluated by spectroscopic ellipsometry. Effective medium theory (EMT) and parametric semiconductor models have been used to model the dielectric function of the layers. Systematic dependences of the layer thickness and the oscillator parameters have been found on the annealing temperature (nanocrystal size).