Browsing by Author "Elbuken, C."
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving(Institute of Physics Publishing, 2016-10) Serhatlioglu, M.; Ortaç, B.; Elbuken, C.; Bıyıklı, Necmi; Solmaz, M. E.In this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for low repetition rate lasers and is first used to define the microwell structures in fused silica followed by chemical etching. Subsequently, the bottom surface of patterned microwells is irradiated with a pulsed CO2 laser. The surfaces were characterized using an atomic force microscope (AFM) and scanning electron microscope (SEM) in terms of roughness and high quality optical imaging before and after the CO2 laser treatment. The AFM measurements show that the surface roughness improves more than threefold after CO2 laser polishing, which promises good channel quality for applications that require optical imaging. In order to demonstrate the ability of this method to produce low surface roughness systems, we have fabricated a microfluidic channel. The channel is filled with polystyrene bead-laden fluid and imaged with transmission mode microscopy. The high quality optical images prove CO2 laser processing as a practical method to reduce the surface roughness of microfluidic channels fabricated by femtosecond laser irradiation. We further compared the traditional and laser-based glass micromachining approaches, which includes FLAC followed by the CO2 polishing technique.Item Open Access CO2 polishing of femtosecond laser micromachined microfluidic channels(Optical Society of America, 2016) Serhatlıoğlu, Murat; Ortaç, Bülend; Elbuken, C.; Bıyıklı, Necmi; Solmaz, Mehmet E.The CO2 polishing of femtosecond laser micromachined channels is studied. The surface quality before and after polishing is observed with naked eye and optical microscope. The method improves imaging of microspheres.Item Open Access Continuous triboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers using microfluidic droplet generation(Wiley-Blackwell, 2016-11) Kanik, M.; Marcali, M.; Yunusa, M.; Elbuken, C.; Bayındır, MehmetTriboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers. Fiber‐based microfluidic energy harvesting system, which is also utilized as self‐powered chemical and biosensor. In vitro device concept demonstrating that triboelectric effect can be used for cell detection.Item Open Access Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets(Royal Society of Chemistry, 2016) Marcali, M.; Elbuken, C.Droplet-based microfluidic systems offer tremendous benefits for high throughput biochemical assays. Despite the wide use of electrical detection for microfluidic systems, application of impedimetric sensing for droplet systems is very limited. This is mainly due to the insulating oil-based continuous phase used for most aqueous samples of interest. We present modelling and experimental verification of impedimetric detection of hemagglutination in microdroplets. We have detected agglutinated red blood cells in microdroplets and screened whole blood samples for multiple antibody sera using conventional microelectrodes. We were able to form antibody and whole blood microdroplets in PDMS microchannels without any tedious chemical surface treatment. Following the injection of a blood sample into antibody droplets, we have detected the agglutination-positive and negative droplets in an automated manner. In order to understand the characteristics of impedimetric detection inside microdroplets, we have developed the lumped electrical circuit equivalent of an impedimetric droplet content detection system. The empirical lumped element values are in accordance with similar models developed for single phase electrical impedance spectroscopy systems. The presented approach is of interest for label-free, quantitative analysis of droplets. In addition, the standard electronic equipment used for detection allows miniaturized detection circuitries that can be integrated with a fluidic system for a quantitative microdroplet-based hemagglutination assay that is conventionally performed in well plates.Item Open Access Microcantilever based disposable viscosity sensor for serum and blood plasma measurements(2013) Cakmak O.; Elbuken, C.; Ermek, E.; Mostafazadeh, A.; Baris I.; Erdem Alaca, B.; Kavakli I.H.; Urey H.This paper proposes a novel method for measuring blood plasma and serum viscosity with a microcantilever-based MEMS sensor. MEMS cantilevers are made of electroplated nickel and actuated remotely with magnetic field using an electro-coil. Real-time monitoring of cantilever resonant frequency is performed remotely using diffraction gratings fabricated at the tip of the dynamic cantilevers. Only few nanometer cantilever deflection is sufficient due to interferometric sensitivity of the readout. The resonant frequency of the cantilever is tracked with a phase lock loop (PLL) control circuit. The viscosities of liquid samples are obtained through the measurement of the cantilever's frequency change with respect to a reference measurement taken within a liquid of known viscosity. We performed measurements with glycerol solutions at different temperatures and validated the repeatability of the system by comparing with a reference commercial viscometer. Experimental results are compared with the theoretical predictions based on Sader's theory and agreed reasonably well. Afterwards viscosities of different Fetal Bovine Serum and Bovine Serum Albumin mixtures are measured both at 23. °C and 37. °C, body temperature. Finally the viscosities of human blood plasma samples taken from healthy donors are measured. The proposed method is capable of measuring viscosities from 0.86. cP to 3.02. cP, which covers human blood plasma viscosity range, with a resolution better than 0.04. cP. The sample volume requirement is less than 150. μl and can be reduced significantly with optimized cartridge design. Both the actuation and sensing are carried out remotely, which allows for disposable sensor cartridges. © 2013 .Item Open Access Microfluidic droplet content detection using integrated capacitive sensors(Elsevier, 2015-04) Isgor, P. K.; Marcali, M.; Keser, M.; Elbuken, C.Microfluidic capacitive sensors have been used for detection of droplets, however they have been lacking the sensitivity required for detecting the content of droplets. In this study, we developed a scalable, portable, robust and high sensitivity capacitive microdroplet content detection system using coplanar electrodes with nanometer thick silicon dioxide (SiO2) passivation layer and off-the-shelf capacitive sensors. The microfluidic chip we have designed provides easy and rapid modification of droplet content by mixing two aqueous liquids at any given ratio. The change in dielectric constant of the droplet content leads to the change in capacitive signal. The dielectric content of droplets was modified continuously while corresponding capacitance signal was measured. The resolution of the system was measured as 3 dielectric permittivity units. The results were verified using a semiconductor parameter analyzer. The application specific integrated circuit used in this work enables a portable, low-cost detection system and matches the performance of bench-top analyzers. Automated and precise measurement of dielectric content in droplets for biochemical assay monitoring is a major application of the presented system.Item Open Access A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics(Springer Verlag, 2017-03) Isiksacan, Z.; Asghari, M.; Elbuken, C.Red blood cell aggregation is an intrinsic property of red blood cells that form reversible stacked structures, also called rouleaux, under low shear rates. Erythrocyte sedimentation rate (ESR), commonly performed in clinics, is an indirect inflammation screener and a prognostic test for diseases. We have recently developed a microfluidic system for rapid measurement of ESR from 40 µl whole blood employing the aggregation dynamics. In this work, we propose the use of an aggregation inducer, dextran polyglucose, for the preparation of multiple blood samples with differing aggregation dynamics. Using these samples, we characterized the performance of the system with three aggregation indices and under varying experimental conditions. Additionally, using the same underlying principle, we improved the system for ESR measurement using both venipuncture and fingerprick whole blood samples depending on the user needs. The results demonstrate that the system performs equally well with both samples, which validates the compatibility of the system for both laboratory and point-of-care applications where venous and capillary blood are the primary samples, respectively. The detailed characterization presented in this study legitimates the feasibility of the system for ultrafast and facile measurement of ESR in clinics and diverse off-laboratory settings.Item Open Access A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate(Royal Society of Chemistry, 2016) Isiksacan, Z.; Erel, O.; Elbuken, C.The erythrocyte sedimentation rate (ESR) is a frequently used 30 min or 60 min clinical test for screening of several inflammatory conditions, infections, trauma, and malignant diseases, as well as non-inflammatory conditions including prostate cancer and stroke. Erythrocyte aggregation (EA) is a physiological process where erythrocytes form face-to-face linear structures, called rouleaux, at stasis or low shear rates. In this work, we proposed a method for ESR measurement from EA. We developed a microfluidic opto-electro-mechanical system, using which we experimentally showed a significant correlation (R2 = 0.86) between ESR and EA. The microfluidic system was shown to measure ESR from EA using fingerprick blood in 2 min. 40 μl of whole blood is filled in a disposable polycarbonate cartridge which is illuminated with a near infrared emitting diode. Erythrocytes were disaggregated under the effect of a mechanical shear force using a solenoid pinch valve. Following complete disaggregation, transmitted light through the cartridge was measured using a photodetector for 1.5 min. The intensity level is at its lowest at complete disaggregation and highest at complete aggregation. We calculated ESR from the transmitted signal profile. We also developed another microfluidic cartridge specifically for monitoring the EA process in real-time during ESR measurement. The presented system is suitable for ultrafast, low-cost, and low-sample volume measurement of ESR at the point-of-care.Item Open Access Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation(Institute of Physics Publishing, 2016) Isiksacan, Z.; Guler, M. T.; Aydogdu, B.; Bilican, I.; Elbuken, C.The conventional fabrication methods for microfluidic devices require cleanroom processes that are costly and time-consuming. We present a novel, facile, and low-cost method for rapid fabrication of polydimethylsiloxane (PDMS) molds and devices. The method consists of three main fabrication steps: female mold (FM), male mold (MM), and chip fabrication. We use a CO2 laser cutter to pattern a thin, spin-coated PDMS layer for FM fabrication. We then obtain reusable PDMS MM from the FM using PDMS/PDMS casting. Finally, a second casting step is used to replicate PDMS devices from the MM. Demolding of one PDMS layer from another is carried out without any potentially hazardous chemical surface treatment. We have successfully demonstrated that this novel method allows fabrication of microfluidic molds and devices with precise dimensions (thickness, width, length) using a single material, PDMS, which is very common across microfluidic laboratories. The whole process, from idea to device testing, can be completed in 1.5 h in a standard laboratory.Item Open Access Robust superhydrophilic patterning of superhydrophobic ormosil surfaces for high-throughput on-chip screening applications(Royal Society of Chemistry, 2016) Beyazkilic, P.; Tuvshindorj, U.; Yildirim, A.; Elbuken, C.; Bayındır, MehmetThis article describes a facile method for the preparation of two-dimensionally patterned superhydrophobic hybrid coatings with controlled wettability. Superhydrophobic coatings were deposited from nanostructured organically modified silica (ormosil) colloids that were synthesized via a simple sol-gel method. On the defined areas of the superhydrophobic ormosil coatings, stable wetted micropatterns were produced using Ultraviolet/Ozone (UV/O) treatment which modifies the surface chemistry from hydrophobic to hydrophilic without changing the surface morphology. The degree of wettability can be precisely controlled depending on the UV/O exposure duration; extremely wetted spots with water contact angle (WCA) of nearly 0° can be obtained. Furthermore, we demonstrated high-throughput biomolecular adsorption and mixing using the superhydrophilic patterns. The proposed superhydrophilic-patterned nanostructured ormosil surfaces with their simple preparation, robust and controlled wettability as well as adaptability on flexible substrates, hold great potential for biomedical and chemical on-chip analysis.Item Open Access SERS-active linear barcodes by microfluidic-assisted patterning(Elsevier, 2020-09-28) Pekdemir, S.; Ipekci, H. H.; Serhatlıoğlu, Murat; Elbuken, C.; Onses, M. S.Simple, low-cost, robust, and scalable fabrication of microscopic linear barcodes with high levels of complexity and multiple authentication layers is critical for emerging applications in information security and anti-counterfeiting. This manuscript presents a novel approach for fabrication of microscopic linear barcodes that can be visualized under Raman microscopy. Microfluidic channels are used as molds to generate linear patterns of end-grafted polymers on a substrate. These patterns serve as templates for area-selective binding of colloidal gold nanoparticles resulting in plasmonic arrays. The deposition of multiple taggant molecules on the plasmonic arrays via a second microfluidic mold results in a linear barcode with unique Raman fingerprints that are enhanced by the underlying plasmonic nanoparticles. The width of the bars is as small as 10 μm, with a total barcode length on the order of 100 μm. The simultaneous use of geometric and chemical security layers provides a high level of complexity challenging the counterfeiting of the barcodes. The additive, scalable, and inexpensive nature of the presented approach can be easily adapted to different colloidal nanomaterials and applications.Item Open Access Sheathless microflow cytometry using viscoelastic fluids(Nature Publishing Group, 2017) Asghari, M.; Serhatlioglu, M.; Ortaç, B.; Solmaz, M. E.; Elbuken, C.Microflow cytometry is a powerful technique for characterization of particles suspended in a solution. In this work, we present a microflow cytometer based on viscoelastic focusing. 3D single-line focusing of microparticles was achieved in a straight capillary using viscoelastic focusing which alleviated the need for sheath flow or any other actuation mechanism. Optical detection was performed by fiber coupled light source and photodetectors. Using this system, we present the detection of microparticles suspended in three different viscoelastic solutions. The rheological properties of the solutions were measured and used to assess the focusing performance both analytically and numerically. The results were verified experimentally, and it has been shown that polyethlyene oxide (PEO) and hyaluronic acid (HA) based sheathless microflow cytometer demonstrates similar performance to state-of-the art flow cytometers. The sheathless microflow cytometer was shown to present 780 particles/s throughput and 5.8% CV for the forward scatter signal for HA-based focusing. The presented system is composed of a single capillary to accommodate the fluid and optical fibers to couple the light to the fluid of interest. Thanks to its simplicity, the system has the potential to widen the applicability of microflow cytometers.Item Open Access A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing(Institute of Physics Publishing, 2015) Guler, M. T.; Bilican, I.; Agan, S.; Elbuken, C.In this paper, we present a very simple method to fabricate three-dimensional (3D) microelectrodes integrated with microfluidic devices. We form the electrodes by etching a microwire placed across a microchannel. For precise control of the electrode spacing, we employ a hydrodynamic focusing microfluidic device and control the width of the etching solution stream. The focused widths of the etchant solution and the etching time determine the gap formed between the electrodes. Using the same microfluidic device, we can fabricate integrated 3D electrodes with different electrode gaps. We have demonstrated the functionality of these electrodes using an impedimetric particle counting setup. Using 3D microelectrodes with a diameter of 25 μm, we have detected 6 μm-diameter polystyrene beads in a buffer solution as well as erythrocytes in a PBS solution. We study the effect of electrode spacing on the signal-to-noise ratio of the impedance signal and we demonstrate that the smaller the electrode spacing the higher the signal obtained from a single microparticle. The sample stream is introduced to the system using the same hydrodynamic focusing device, which ensures the alignment of the sample in between the electrodes. Utilising a 3D hydrodynamic focusing approach, we force all the particles to go through the sensing region of the electrodes. This fabrication scheme not only provides a very low-cost and easy method for rapid prototyping, but which can also be used for applications requiring 3D electric field focused through a narrow section of the microchannel.Item Open Access A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection(Elsevier, 2017) Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A. E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A.We demonstrate a surface plasmon resonance imaging platform integrated with a smartphone to be used in the field with high-throughput biodetection. Inexpensive and disposable SPR substrates are produced by metal coating of commercial Blu-ray discs. A compact imaging apparatus is fabricated using a 3D printer which allows taking SPR measurements from more than 20.000 individual pixels. Real-time bulk refractive index change measurements yield noise equivalent refractive index changes as low as 4.12 × 10−5 RIU which is comparable with the detection performance of commercial instruments. As a demonstration of a biological assay, we have shown capture of mouse IgG antibodies by immobilized layer of rabbit anti-mouse (RAM) IgG antibody with nanomolar level limit of detection. Our approach in miniaturization of SPR biosensing in a cost-effective manner could enable realization of portable SPR measurement systems and kits for point-of-care applications.Item Open Access A versatile plug microvalve for microfluidic applications(Elsevier, 2017-10) Guler, M. T.; Beyazkilic, P.; Elbuken, C.Most of the available microvalves include complicated fabrication steps and multiple materials. We present a microvalve which is inspired from macroplug valves. The plug microvalve is fabricated by boring a hole through a rigid cylindrical rod and inserting it through a microfluidic chip. It simply functions by rotating the rod which aligns or misaligns the valve port with the microchannel. The rod is made up of a rigid material for applying the valve to an elastic polydimethylsiloxane (PDMS) microchannel. The valve can also be used for a rigid channel by inserting the rod into an elastic tubing. Therefore, the presented microvalve can be used for both elastomeric and thermoplastic channels. The plug microvalve can be applied to a prefabricated microchannel and does not require modification of the mold design. We have verified the repeatability and robustness of the valve by repetitive operation cycles using a servo motor. The plug microvalve is adaptable to numerous microfluidic applications. We have shown three modes of operation for the microvalve including fluid flow control across multiple intersecting channels. Integrating the microvalve to some commonly used microfluidic designs, we demonstrated the versatility and the practicality of the microvalve for controlling flow focusing, microdroplet sorting and rapid chemical agent detection. This low-cost microvalve significantly minimizes the prototyping time for microfluidic systems.