Browsing by Author "Balkan, N."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Energy relaxation of electrons in InGaN quantum wells(Springer New York LLC, 2015-04) Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Balkan, N.; Atmaca, G.; Narin, P.; Cakmak, H.; Özbay, EkmelIn this study, electron energy relaxation mechanisms in HEMT structures with different InxGa1−xN-channel quantum well (QW) widths are investigated. Theoretical value of the inelastic scattering rates is carried out at electron temperatures between 30 K (−243 °C) < Te < 700 K (427 °C). We used both the experimentally determined and calculated electron temperatures to estimate the energy relaxation rates of non-equilibrium electrons. In wide InGaN QWs, power loss of an electron is shown to be significantly smaller than that in the narrower QWs. © 2015, The Minerals, Metals & Materials Society and ASM International.Item Open Access Investigation of low-temperature electrical conduction mechanisms in highly resistive GaN bulk layers extracted with Simple Parallel Conduction Extraction Method(Springer, 2009-12-03) Yildiz, A.; Lisesivdin, S. B.; Kasap, M.; Ozcelik, S.; Özbay, Ekmel; Balkan, N.The electrical conduction mechanisms in various highly resistive GaN layers of Al x Ga1-x N/AlN/GaN/AlN heterostructures are investigated in a temperature range between T=40 K and 185 K. Temperature-dependent conductivities of the bulk GaN layers are extracted from Hall measurements with implementing simple parallel conduction extraction method (SPCEM). It is observed that the resistivity (ρ) increases with decreasing carrier density in the insulating side of the metal-insulator transition for highly resistive GaN layers. Then the conduction mechanism of highly resistive GaN layers changes from an activated conduction to variable range hopping conduction (VRH). In the studied temperature range, ln∈(ρ) is proportional to T -1/4 for the insulating sample and proportional to T -1/2 for the more highly insulating sample, indicating that the transport mechanism is due to VRH.Item Open Access Large zero-field spin splitting in AlGaN/AlN/GaN/AlN heterostructures(AIP Publishing LLC, 2009) Lisesivdin, S. B.; Balkan, N.; Makarovsky, O.; Patanè, A.; Yildiz, A.; Caliskan, M. D.; Kasap, M.; Ozcelik, S.; Özbay, EkmelThis work describes Shubnikov-de Haas (SdH) measurements in Al0.22 Ga0.78 N/AlN/GaN/AlN heterostructures. Our experiments coupled with the analysis of the Hall data at various temperatures confirm the formation of a two-dimensional electron gas (2DEG) at the AlN/GaN interface. A beating pattern in the SdH oscillations is also observed and attributed to a zero-field spin splitting of the 2DEG first energy subband. The values of the effective spin-orbit coupling parameter and zero-field spin-split energy are estimated and compared with those reported in the literature. We show that zero-field spin-split energy tends to increase with increasing sheet electron density and that our value (12.75 meV) is the largest one reported in the literature for GaN-based heterostructures.Item Open Access The operation of a novel hot electron vertical cavity surface emitting laser(SPIE, 1998) Balkan, N.; O'Brien-Davies, A.; Thoms, A. B.; Potter, R. J.; Poolton, N.; Adams, M. J.; Masum, J.; Bek, Alpan; Serpengüzel, Ali; Aydınlı, Atilla; Roberts, J. S.The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga 1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of 'lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.Item Open Access Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method(American Institute of Physics, 2010-07-15) Lisesivdin, S. B.; Yildiz, A.; Balkan, N.; Kasap, M.; Ozcelik, S.; Özbay, EkmelWe carried out the temperature (22-350 K) and magnetic field (0.05 and 1.4 T) dependent Hall mobility and carrier density measurements on Al 0.22Ga0.78N/GaN heterostructures with AlN interlayer grown by metal-organic chemical-vapor deposition. Hall data is analyzed with a simple parallel conduction extraction method and temperature dependent mobility and carrier densities of the bulk and two-dimensional (2D) electrons are extracted successfully. The results for the bulk carriers are discussed using a theoretical model that includes the most important scattering mechanisms that contribute to the mobility. In order to investigate the mobility of two-dimensional electron gas, we used a theoretical model that takes into account the polar optical phonon scattering, acoustic phonon scattering, background impurity scattering, and interface roughness scattering in 2D. In these calculations, the values are used for the deformation potential and ionized impurity density values were obtained from the bulk scattering analysis. Therefore, the number of fitting parameters was reduced from four to two. © 2010 American Institute of Physics.Item Open Access A simple parallel conduction extraction method (SPCEM) for MODFETs and undoped GaN-based HEMTs(ELSEVIER, 2008-07-14) Lisesivdin, S. B.; Balkan, N.; Özbay, EkmelWe report a simple method to extract the mobility and sheet carrier densities of conduction channels in conventional modulation doped field-effect transistor (MODFET) structures and unintentionally doped GaN-based high-electron mobility transistor (HEMT) structures for a special case. Extraction of the conduction channels from the magnetic field-dependent data can present number of problems; even the most recent methods encounter great difficulties. For the GaN-based HEMT structures which have lower mobilities and larger effective masses than that of GaAs-based counterparts, these difficulties become more prominent. In this study, we describe a simple method for magnetotransport analysis to extract conduction channels successfully for a special case that is commonly encountered: one bulk channel and one two-dimensional electron gas (2DEG) channel. Advantage of this method is mainly its simplicity. The analysis can be done with only two magnetic field-dependent measurements per temperature step. The method is applied to the magnetotransport results of an unintentionally doped AlGaN/AlN/GaN/AlN heterostructure over a temperature range of 29-350 K and in a magnetic field range of 0-1.5 T (μB<1). The results are then compared with those obtained using a commercial package for these calculations namely: quantitative mobility spectrum analysis (QMSA).Item Open Access The static and dynamic screening of power loss of a two-dimensional electron gas(Academic Press, 1998) Bennett, C.; Balkan, N.; Tanatar, Bilal; Celik, H.; Cankurtaran, M.Experimental results concerning the well-width dependence of the acoustic-phonon-assisted energy relaxation of a two-dimensional electron gas in GaAs/Ga1-xAlxAs quantum-well structures are compared with theoretical models that involve piezoelectric and deformation-potential scattering and the effects of static and dynamic screening of the electron-acoustic phonon interaction. It is shown that screening only slightly modifies the predictions of the approximate calculations. © 1998 Academic Press.Item Open Access Super-radiant surface emission from a quasi-cavity hot electron light emitter(Springer New York LLC, 1999) O'Brien, A.; Balkan, N.; Boland-Thoms, A.; Adams, M.; Bek, A.; Serpengüzel, A.; Aydınlı, A.; Roberts, J.The Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure (HELLISH-1) device is a novel surface emitter which utilises hot carrier transport parallel to the layers of a Ga1 - xAlxAs p-n junction incorporating a single GaAs quantum well on the n-side of the junction plane. Non-equilibrium electrons are injected into the quantum well via tunnelling from the n-layer. In order to preserve the charge neutrality in the depletion region, the junction undergoes a self-induced internal biasing. As a result the built-in potential on the p-side is reduced and hence the injection of non-equilibrium holes into the quantum well in the active region is enhanced. The work presented here shows that a distributed Bragg reflector grown below the active region of the HELLISH device increases the emitted light intensity by two orders of magnitude and reduces the emission line-width by about a factor of 3 in comparison with the original HELLISH-1 structure. Therefore, the device can be operated as an ultrabright emitter with higher spectral purity.