Browsing by Author "Ayas S."
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access All-aluminum hierarchical plasmonic surfaces in the infrared(The Optical Society, 2016) Ayas S.; Bakan, G.; Dana, A.All-Aluminum metal-insulator-metal resonator structures withmultiple metal-insulator stacks showing resonances in the mid-infrared(MIR) are fabricated. Ultrathin native Al2O3 is used as the insulator layersenabling simple fabrication of the resonator structures. The structures withtwo oxide layers exhibit two distinct resonances in the MIR. Simulation ofthese structures shows confinement of magnetic field to the thicker bottomoxide at the shorter wavelength resonance and to the thinner top oxide at theother resonance. Simulations of higher order hierarchical structures with 3 and 4 oxide layers show multispectral response with precise control of theoxide thicknesses. The studied structures show great potential for IRapplications that require durability and multispectral characteristics.Item Open Access Colorimetric detection of ultrathin dielectrics on strong interference coatings(OSA - The Optical Society, 2018) Ayas S.; Bakan, G.; Ozgur E.; Celebi, K.; Torunoglu, G.; Dana, A.Metal films covered with ultrathin lossy dielectrics can exhibit strong interference effects manifested as the broad absorption of the incident light resulting in distinct surface colors. Despite their simple bilayer structures, such surfaces have only recently been scrutinized and applied mainly to color printing. Here, we report the use of such surfaces for colorimetric detection of ultrathin dielectrics. Upon deposition of a nanometer-thick dielectric on the surface, the absorption peak red shifts, changing the surface color. The color contrast between the bare and dielectric-coated surfaces can be detected by the naked eye. The optical responses of the surfaces are characterized for nanometer-thick SiO2, Al2O3, and bovine serum albumin molecules. The results suggest that strong interference surfaces can be employed as biosensors.Item Open Access Counting molecules with a mobile phone camera using plasmonic enhancement(American Chemical Society, 2014) Ayas S.; Cupallari, A.; Ekiz, O. O.; Kaya, Y.; Dana, A.Plasmonic field enhancement enables the acquisition of Raman spectra at a single molecule level. Here we investigate the detection of surface enhanced Raman signal using the unmodified image sensor of a smart phone, integrated onto a confocal Raman system. The sensitivity of a contemporary smart phone camera is compared to a photomultiplier and a cooled charge-coupled device. The camera displays a remarkably high sensitivity, enabling the observation of the weak unenhanced Raman scattering signal from a silicon surface, as well as from liquids, such as ethanol. Using high performance wide area plasmonic substrates that enhance the Raman signal 106 to 107 times, blink events typically associated with single molecule motion, are observed on the smart phone camera. Raman spectra can also be collected on the smart phone by converting the camera into a low resolution spectrometer with the inclusion of a collimator and a dispersive optical element in front of the camera. In this way, spectral content of the blink events can be observed on the plasmonic substrate, in real time, at 30 frames per second. (Figure Presented) © 2013 American Chemical Society.Item Open Access Exploiting native Al2O3 for multispectral aluminum plasmonics(American Chemical Society, 2014) Ayas S.; Topal, A. E.; Cupallari, A.; Güner, H.; Bakan, G.; Dana, A.Aluminum, despite its abundance and low cost, is usually avoided for plasmonic applications due to losses in visible/infrared regimes and its interband absorption at 800 nm. Yet, it is compatible with silicon CMOS processes, making it a promising alternative for integrated plasmonic applications. It is also well known that a thin layer of native Al2O3 is formed on aluminum when exposed to air, which must be taken into account properly while designing plasmonic structures. Here, for the first time we report exploitation of the native Al2O3 layer for fabrication of periodic metal-insulator-metal (MIM) plasmonic structures that exhibit resonances spanning a wide spectral range, from the near-ultraviolet to mid-infrared region of the spectrum. Through fabrication of silver nanoislands on aluminum surfaces and MIM plasmonic surfaces with a thin native Al2O3 layer, hierarchical plasmonic structures are formed and used in surface-enhanced infrared spectroscopy (SEIRA) and surface-enhanced Raman spectrocopy (SERS) for detection of self-assembled monolayers of dodecanethiol. (Chemical Equation Presented). © 2014 American Chemical Society.Item Open Access Grating coupler integrated photodiodes for plasmon resonance based sensing(Royal Society of Chemistry, 2011) Turker, B.; Guner, H.; Ayas S.; Ekiz, O. O.; Acar, H.; Güler, Mustafa O.; Dâna, A.In this work, we demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism. Enhanced transmission of light is monitored via the integrated photodiode by tuning the angle of incidence of a collimated beam near the sharp plasmon resonance condition. Slight changes of the effective refractive index (RI) shift the resonance angle, resulting in a change in the photocurrent. Owing to the planar sensing mechanism, the design permits a high areal density of sensing spots. In the design, absence of holes that facilitate resonant transmission of light, allows an easy-to-implement fabrication procedure and relative insensitivity to fabrication errors. Theoretical and experimental results agree well. An equivalent long-term RI noise of 6.3 × 10 -6 is obtained by using an 8 mW He-Ne laser, compared to a shot-noise limited theoretical sensitivity of 5.61 × 10-9. The device features full benefits of grating-coupled plasmon resonance, such as enhancement of sensitivity for non-zero azimuthal angle of incidence. Further sensitivity enhancement using balanced detection and optimal plasmon coupling conditions are discussed. © 2011 The Royal Society of Chemistry.Item Open Access Invisible thin-film patterns with strong infrared emission as an optical security feature(Wiley-VCH Verlag, 2018) Bakan, G.; Ayas S.; Serhatlioglu, M.; Elbuken, Çağlar; Dana, A.Spectrally selective thermal emission is in high demand for thermophotovoltaics, radiative cooling, and infrared sensing applications. Spectral control of the emissivity is historically achieved by choosing the material with suitable infrared properties. The recent advancements in nanofabrication techniques that lead to enhanced light-matter interactions enable optical properties like infrared emissivity that are not naturally available. In this study, thermal emitters based on nanometer-thick dielectrics on field-enhancement surfaces as optical security features are proposed. Such a function is achieved by generating patterns by ultrathin dielectrics that are transparent in the visible and exhibit strong infrared absorption in the spectral range of thermal cameras. The invisible patterns are then revealed by thermal imaging. The field-enhancement surfaces enhance the emissivity of the patterns, in turn reduce the minimum temperature to detect the thermal emission down to ≈30 °C from >150 °C to exploit ubiquitous heat sources like the human body. The study provides a framework for the use of thermal emitters as optical security features and demonstrates applications on rigid and flexible substrates.Item Open Access Perfectly absorbing ultra thin interference coatings for hydrogen sensing(OSA - The Optical Society, 2016) Serhatlioglu, M.; Ayas S.; Bıyıklı, Necmi; Dana, A.; Solmaz, M. E.Here we numerically demonstrate a straightforward method for optical detection of hydrogen gas by means of absorption reduction and colorimetric indication. A perfectly absorbing metal-insulator-metal (MIM) thin film interference structure is constructed using a silver metal back reflector, silicon dioxide insulator, and palladium as the upper metal layer and hydrogen catalyst. The thickness of silicon dioxide allows the maximizing of the electric field intensity at the Air/SiO2 interface at the quarter wavelengths and enabling perfect absorption with the help of highly absorptive palladium thin film (∼7 nm). While the exposure of the MIM structure to H2 moderately increases reflection, the relative intensity contrast due to formation of metal hydride is extensive. By modifying the insulator film thickness and hence the spectral absorption, the color is tuned and eye-visible results are obtained.Item Open Access Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy(American Institute of Physics Inc., 2014) Ayas S.; Cupallari, A.; Dana, A.Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO2 exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10-6 for 445 nm illumination. © 2014 AIP Publishing LLC.Item Open Access Raman enhancement on a broadband meta-surface(American Chemical Society, 2012-07-30) Ayas S.; Güner, H.; Türker, B.; Ekiz, O. O.; Dirisaglik, F.; Okyay, Ali Kemal; Dâna, A.Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material.Item Open Access Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers(OSA - The Optical Society, 2015) Ayas S.; Bakan, G.; Dana, A.Multispectral metamaterial absorbers based on metal-insulatormetal nano-square patch resonators are studied here. For a geometry consisting of perfectly nano-square patches and vertical sidewalls, double resonances in the visible regime are observed due to simultaneous excitation of electric and magnetic plasmon modes. Although slightly modifying the sizes of the square patches makes the resonance wavelengths simply shift, rounding corners of the square patches results in emergence of a third resonance due to excitation of the circular cavity modes. Sidewall angle of the patches are also observed to affect the absorption spectra significantly. Peak absorption values for the triple resonance structures are strongly affected as the sidewall angle varies from 90 to 50 degrees. Rounded corners and slanted sidewalls are typical imperfections for lithographically fabricated metamaterial structures. The presented results suggest that imperfections caused during fabrication of the top nanostructures must be taken into account when designing metamaterial absorbers. Furthermore, it is shown that these fabrication imperfections can be exploited for improving resonance properties and bandwidths of metamaterials for various potential applications such as solar energy harvesting, thermal emitters, surface enhanced spectroscopies and photodetection. © 2015 Optical Society of America.Item Open Access Sensitivity comparison of localized plasmon resonance structures and prism coupler(2014) Kaya, Y.; Ayas S.; Topal, A. E.; Guner, H.; Dana, A.Plasmon resonances are widely used in biomolecular sensing and continue to be an active research field due to the rich variety of surface and measurement configurations, some of which exhibit down to single molecule level sensitivity. The resonance wavelength shift of the plasmonic structure upon binding of molecules, strongly depends, among other parameters, on how well the field of the resonant mode is confined to the binding site. Here it is shown that, by using properly designed metal-insulator-metal type resonators, improved wavelength response can be achieved with localized surface plasmon resonators (LSPRs) compared to that of the commonly used Kretschmann geometry. Using computational tools we investigate theoretically the refractive index response of several LSPR structures to a 2 nm thin film of binding molecules. LSPR resonators are shown to feature improved sensitivity over conventional Kretschmann geometry in the wavelength interrogation scheme for such a thin film. Moreover, some of the LSPR modes are quasi-omnidirectional and such angular independence (up to 30 angle of incidence) allows higher numerical apertures to be used in colorimetric imaging. Results highlight the potential of LSPRs for biomolecular sensing with high sensitivity and high spatial resolution.Item Open Access Surface enhanced Raman spectroscopy of unilamellar liposomes loaded with silver nanoparticles(American Scientific Publishers, 2017) Toren, P.; Tekinay, T.; Ayas S.; Dana, A.; Tunc, I.Imaging organic molecules using surface-enhanced Raman spectroscopy (SERS) has drawn attention due to its non-invasive nature and label-free approach. The SERS approach can be used in tracking organic molecules and monitoring unique Raman spectra of the organic molecules bound to metal nanoparticles (NPs). We prepared unilamellar liposomes composed of 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC) molecules with a diameter of around 100 nm. Electrostatic binding of silver (Ag) NPs on the surface of the unilamellar liposomes was achieved by the reduction of silver nitrate (AgNO3) which produces SERS active silver colloidal particles on the unilamellar liposome surfaces. Highly enhanced electromagnetic fields localized around neighbouring Ag NPs provide hot-spot construction around the liposomes, due to the spatial distribution of SERS enhancement in the unilamellar liposomes. It was observed that the signals fluctuate on a second time scale, presumably due to conformational change of DPPC chain and local Brownian motion of liposomal spheres.Item Open Access Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films(American Chemical Society, 2016-11) Bakan, G.; Ayas S.; Ozgur E.; Celebi, K.; Dana, A.The thermal tunability of the optical and electrical properties of phase-change materials has enabled the decades-old rewritable optical data storage and the recently commercialized phase-change memory devices. Recently, phase-change materials, in particular, Ge2Sb2Te5 (GST), have been considered for other thermally configurable photonics applications, such as active plasmonic surfaces. Here, we focus on nonplasmonic field enhancement and demonstrate the use of the phase-change materials in ultrasensitive infrared absorption spectroscopy platforms employing interference-based uniform field enhancement. The studied structures consist of patternless thin GST and metal films, enabling simple and large-area fabrication on rigid and flexible substrates. Crystallization of the as-fabricated amorphous GST layer by annealing tunes (redshifts) the field-enhancement wavelength range. The surfaces are tested with ultrathin chemical and biological probe materials. The measured absorption signals are found to be comparable or superior to the values reported for the ultrasensitive infrared absorption spectroscopy platforms based on plasmonic field-enhancement.Item Open Access Ultrathin phase-change coatings on metals for electrothermally tunable colors(American Institute of Physics Inc., 2016-08) Bakan, G.; Ayas S.; Saidzoda, T.; Celebi, K.; Dana, A.Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.Item Open Access Universal infrared absorption spectroscopy using uniform electromagnetic enhancement(American Chemical Society, 2016) Ayas S.; Bakan, G.; Ozgur E.; Celebi, K.; Dana, A.Infrared absorption spectroscopy has greatly benefited from the electromagnetic field enhancement offered by plasmonic surfaces. However, because of the localized nature of plasmonic fields, such field enhancements are limited to nanometer-scale volumes. Here, we demonstrate that a relatively small, but spatially uniform field enhancement can yield a superior infrared detection performance compared to the plasmonic field enhancement exhibited by optimized infrared nanoantennas. A specifically designed CaF2/Al thin film surface is shown to enable observation of stronger vibrational signals from the probe material, with wider bandwidth and a deeper spatial extent of the field enhancement as compared to such plasmonic surfaces. It is demonstrated that the surface structure presented here can enable chemically specific and label-free detection of organic monolayers using surface-enhanced infrared spectroscopy, indicating a great potential in highly sensitive yet cost-effective biomolecular sensing applications.