Ultrathin phase-change coatings on metals for electrothermally tunable colors

Date

2016-08

Authors

Bakan, G.
Ayas S.
Saidzoda, T.
Celebi, K.
Dana, A.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
35
downloads

Citation Stats

Series

Abstract

Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.

Source Title

Applied Physics Letters

Publisher

American Institute of Physics Inc.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English