Browsing by Author "Ay, F."
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Comparative investigation og hydrogen bonding in silicon based PECVD grown dielectrics for optical(Elsevier, 2004-06) Ay, F.; Aydınlı, AtillaSilicon oxide, silicon nitride and silicon oxynitride layers were grown by a PECVD technique. The resulting refractive indices of the layers varied between 1.47 and 1.93. The compositional properties of the layers were analyzed by FTIR and ATR infrared spectroscopy techniques. Comparative investigation of bonding structures for the three different layers was performed. Special attention was given to analyze N-H bond stretching absorption at 3300-3400 cm(-1). Quantitative results for hydrogen related bonding concentrations are presented based on IR analysis. An annealing study was performed in order to reduce or eliminate this bonding types. For the annealed samples the N-H bond concentration was strongly reduced as verified by FTIR transmittance and ATR spectroscopic methods. A correlation between the N-H concentration and absorption loss was verified for silicon oxynitride slab waveguides. Moreover, a single mode waveguide with silicon oxynitride core layer was fabricated. Its absorption and insertion loss values were determined by butt-coupling method, resulting in low loss waveguides. (C) 2004 Elsevier B.V. All rights reserved.Item Open Access CVD grown 2D MoS2 layers: a photoluminescence and fluorescence lifetime imaging study(Wiley-VCH Verlag, 2016) Özden, A.; Şar, H.; Yeltik A.; Madenoğlu, B.; Sevik, C.; Ay, F.; Perkgöz, N. K.In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS2. µ-Raman, µ-photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS2 films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain-boundaries. (Figure presented.). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimItem Open Access A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals(Royal Society of Chemistry, 2018) Kocabaş, T.; Çakır, D.; Gülseren, Oğuz; Ay, F.; Kosku-Perkgöz, N.; Sevik, C.The investigation of thermal transport properties of novel two-dimensional materials is crucially important in order to assess their potential to be used in future technological applications, such as thermoelectric power generation. In this respect, the lattice thermal transport properties of the monolayer structures of group VA elements (P, As, Sb, Bi, PAs, PSb, PBi, AsSb, AsBi, SbBi, P3As1, P3Sb1, P1As3, and As3Sb1) with a black phosphorus like puckered structure were systematically investigated by first-principles calculations and an iterative solution of the phonon Boltzmann transport equation. Phosphorene was found to have the highest lattice thermal conductivity, κ, due to its low average atomic mass and strong interatomic bonding character. As a matter of course, anisotropic κ was obtained for all the considered materials, owing to anisotropy in frequency values and phonon group velocities calculated for these structures. However, the determined linear correlation between the anisotropy in the κ values of P, As, and Sb is significant. The results corresponding to the studied compound structures clearly point out that thermal (electronic) conductivity of pristine monolayers might be suppressed (improved) by alloying them with the same group elements. For instance, the room temperature κ of PBi along the armchair direction was predicted to be as low as 1.5 W m-1 K-1, whereas that of P was predicted to be 21 W m-1 K-1. In spite of the apparent differences in structural and vibrational properties, we peculiarly revealed an intriguing correlation between the κ values of all the considered materials as κ = c1 + c2/m2, in particular along the zigzag direction. Furthermore, our calculations on compound structures clearly showed that the thermoelectric potential of these materials can be improved by suppressing their thermal properties. The presence of ultra-low κ values and high electrical conductivity (especially along the armchair direction) makes this class of monolayers promising candidates for thermoelectric applications.Item Open Access An elastomeric grating coupler(IOP Institute of Physics, 2006) Kocabas, A.; Ay, F.; Dâna, A.; Aydınlı, AtillaWe report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to the surface of the waveguide with van der Waals forces and makes conformal contact without any applied pressure. As a demonstration of the feasibility of the approach, we use it to measure the refractive index of a silicon oxynitride film. This technique is nondestructive, reversible, low cost and can easily be applied to the characterization of optical materials for integrated optics. © 2006 IOP Publishing Ltd.Item Open Access High-refractive-index measurement with an elastromeric grating coupler(Optical Society of America, 2005) Kocabas, A.; Ay, F.; Dana, A.; Kiyat, A.; Aydınlı, AtillaAn elastomeric grating coupler fabricated by the replica molding technique is used to measure the modal indices of a silicon-on-insulator (SOI) planar waveguide structure. Because of the van der Waals interaction between the grating mold and the waveguide, the elastomeric stamp makes conformal contact with the waveguide surface, inducing a periodic index perturbation at the contact region. The phase of the incident light is changed to match the guided modes of the waveguide. The modal and bulk indices are obtained by measuring the coupling angles. This technique serves to measure the high refractive index with a precision better than 10(-3) and allows the elastomeric stamp to be removed without damaging the surface of the waveguide.Item Open Access Influence of substrate temperature and bias voltage on the optical transmittance of TIN Films(Elsevier Science, 2003) Durusoy, H. Z.; Duyar, O.; Aydınlı, Atilla; Ay, F.Titanium nitride (TiN) thin films were prepared by means of reactive DC sputtering on quartz and sapphire substrates. Structural, electrical and optical effects of deposition parameters such as thickness, substrate temperature, substrate bias voltage were studied. The effect of substrate temperature variations in the 100-300degreesC range and substrate bias voltage variations in the 0-200 V DC range for 45-180 nm thick TiN films were investigated. Temperature-ependent electrical resistivity in the 100-350K range and optical transmission in the 300-1500 nm range were measured for the samples. In addition, structural and morphological properties were studied by means of XRD and STM techniques. The smoothest surface and the lowest electrical resistivity was recorded for the optimal samples that were biased at about V-s= -120V DC. Unbiased films exhibited a narrow optical transmission window between 300 and 600 nm. However, the transmission became much greater with increasing bias voltage for the same substrate temperature. Furthermore, it was found that lower substrate temperatures produced optically more transparent films. Application of single layers of MgF2 antireflecting coating on optimally prepared TiN films helped increase the optical transmission in the visible region to more than 40% for 45 nm thick samples.Item Open Access Low-loss as-grown germanosilicate layers for optical waveguides(A I P Publishing LLC, 2003) Ay, F.; Aydınlı, Atilla; Agan, S.We report on systematic growth and characterization of low-loss germanosilicate layers for use in optical waveguide technology. The films were deposited by plasma-enhanced chemical vapor deposition technique using silane, germane, and nitrous oxide as precursor gases. Fourier transform infrared spectroscopy was used to monitor the compositional properties of the samples. It was found that addition of germane leads to decreasing of N-H- and O-H-related bonds. The propagation loss values of the planar waveguides were correlated with the decrease in the hydrogen-related bonds of the as-deposited waveguides and resulted in very low values, eliminating the need for high-temperature annealing as is usually done.Item Open Access MoS2 phototransistor sensitized by colloidal semiconductor quantum wells(Wiley-VCH Verlag, 2020-12) Sar, H.; Taghipour, Nima; Lisheshar, İ. W.; Delikanlı, Savaş; Demirtaş, M.; Demir, Hilmi Volkan; Ay, F.; Perkgöz, N. K.A phototransistor built by the assembly of 2D colloidal semiconductor quantum wells (CQWs) on a single layer of 2D transition metal dichalcogenide (TMD) is displayed. This hybrid device architecture exhibits high efficiency in Förster resonance energy transfer (FRET) enabling superior performance in terms of photoresponsivity and detectivity. Here, a thin film of CdSe/CdS CQWs acts as a sensitizer layer on top of the MoS2 monolayer based field‐effect transistor, where this CQWs–MoS2 structure allows for strong light absorption in CQWs in the operating spectral region and strong dipole‐to‐dipole coupling between MoS2 and CQWs resulting in enhanced photoresponsivity of one order of magnitude (11‐fold) at maximum gate voltage (VBG = 2 V) and two orders of magnitude (≈ 5 × 102) at VBG = −1.5 V, and tenfold enhanced specific detectivity. The illumination power‐dependent characterization of this hybrid device reveals that the thin layer of CQWs dominates the photogating mechanism compared to the photoconductivity effect on detection performance. Such hybrid designs hold great promise for 2D‐material based photodetectors to reach high performance and find use in optoelectronic applications.Item Open Access Prism coupling technique investigation of elasto-optical properties of thin polymer films(American Institute of Physics, 2004) Ay, F.; Kocabas, A.; Kocabas, C.; Aydınlı, Atilla; Agan, S.The use of thin polymer films in optical planar integrated optical circuits is rapidly increasing. Much interest, therefore, has been devoted to characterizing the optical and mechanical properties of thin polymer films. This study focuses on measuring the elasto-optical properties of three different polymers; polystyrene, polymethyl-methacrylate, and benzocyclobutane. The out-of-plane elastic modulus, refractive index, film thickness, and birefringence of thin polymer films were determined by means of the prism coupling technique. The effect of the applied stress on the refractive index and birefringence of the films was investigated. Three-dimensional finite element method analysis was used so as to obtain the principal stresses for each polymer system, and combining them with the stress dependent refractive index measurements, the elasto-optic coefficients of the polymer films were determined. It was found that the applied stress in the out-of-plane direction of the thin films investigated leads to negative elasto-optic coefficients, as observed for all the three thin polymer films.Item Open Access Stress effects in prism coupling measurements of thin polymer films(Springer, 2005) Agan, S.; Ay, F.; Kocabas, A.; Aydınlı, AtillaDue to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However, such measurements are often complicated by the softness of the polymer films when stress is applied to the prism to couple light into the waveguides. In this work, we have investigated the optical properties of three different polymers, polystyrene (PS), polymethyl-methacrylate (PMMA), and benzocyclobutane (BCB). For the first time, the dependence of the refractive index, film thickness, and birefringence on applied stress in these thin polymer films was determined by means of the prism coupling technique. Both symmetric trapezoid shaped and right-angle prisms were used to couple the light into the waveguides. It was found that trapezoid shaped prism coupling gives better results in these thin polymer films. The refractive index of PMMA was found to be in the range of 1.4869 up to 1.4876 for both TE and TM polarizations under the applied force, which causes a small decrease in the film thickness of up to 0.06 μm. PMMA waveguide films were found not to be birefringent. In contrast, both BCB and PS films exhibit birefringence albeit of opposing signs.