Browsing by Author "İnci, Fatih"
Now showing 1 - 20 of 38
- Results Per Page
- Sort Options
Item Open Access 3D breast cancer model on silk fibroin–integrated microfluidic chips(SPRINGER HEIDELBERG, 2024) Yılmaz, Eylül Gülşen; İnci, FatihTo imitate in vivo environment of cells, microfluidics offer controllable fashions at micro-scale and enable regulate flow-related parameters precisely, leveraging the current state of 3D systems to 4D level through the inclusion of flow and shear stress. In particular, integrating silk fibroin as an adhering layer with microfluidic chips enables to form more comprehensive and biocompatible network between cells since silk fibroin holds outstanding mechanical and biological properties such as easy processability, biocompatibility, controllable biodegradation, and versatile functionalization. In this chapter, we describe design and fabrication of a microfluidic chip, with silk fibroin-covered microchannels for the formation of 3D structures, such as MCF-7 (human breast cancer) cell spheroids as a model system. All the steps performed here are characterized by surface-sensitive tools and standard tissue culture methods. Overall, this strategy can be easily integrated into various high-tech application areas such as drug delivery systems, regenerative medicine, and tissue engineering in near future.Item Embargo A high-precision method for manufacturing tunable solid microneedles using dicing saw and xenon difluoride-induced dry etching(Elsevier BV, 2023-12-19) Eş, İsmail; Kafadenk, Abdullah; İnci, FatihNumerous fabrication techniques have been employed to produce solid microneedles (MNs); yet precise manufacturing of MNs with adjustable features (height, aspect ratio, and array number) remains the main limitation. Developing tunable MNs holds immense promise for personalized and efficient drug delivery systems. In this study, we utilized a combination of dicing saw and XeF2 isotropic dry etching processes to fabricate solid MNs with tunable characteristics. We herein created rectangular arrays using a dicing saw with desired geometry followed by dry etching to form MN arrays without further processing. Employing optimized parameters, the average heights of the MNs were 522 +/- 15 mu m, 614 +/- 42 mu m, and 698 +/- 22 mu m for initial pattern depths of 500 mu m, 600 mu m, and 700 mu m, respectively. Moreover, we achieved an aspect ratio as high as 3.7, a radius of curvature less than 10 mu m, and a tip angle as low as 6.4(o). The mechanical and surface properties of the MNs were enhanced through magnetron sputtering with titanium. An ex vivo penetration test conducted on porcine skin demonstrated the significant potential of these MNs for transdermal drug delivery in future investigations. Overall, a cost-effective production of a single solid MN patch, featuring 400 MN arrays per cm(2), can be achieved within a remarkably short timeframe (approximately 2 h). Investigating fundamental principles, this study addresses the persistent challenge in manufacturing solid MNs with adjustable features, such as height, aspect ratio, and array number. This presents a substantial advantage over alternative fabrication techniques.Item Open Access A hybrid Au/Ru catalyst for sequential alkyne hydration/asymmetric transfer hydrogenation reactions(Royal Society of Chemistry, 2024-05-05) Öztürk, Bengi Özgün; Durmuş Ağlamaz, Burcu; Aşkun, Mina; Tunalı, Zeynep; Özer, Halenur; Sağdıç, Kutay; İnci, FatihThe utilization of organic/inorganic core/shell support materials by compartmentalizing of Au(i)/Ru(ii) catalysts has led to the formation of chiral alcohol derivatives from alkynes via sequential alkyne hydration and asymmetric transfer hydrogenation reactions. A Ru(ii) complex was supported on chiral ligand end-capped amphiphilic ROMP polymers. The micellar Ru(ii) catalyst was coated with a mesoporous silica shell to produce a secondary compartment where an IPrAuCl complex was confined in mesopores of silica gel through post-pore size reduction. A variety of alkynes were converted to chiral alcohol derivatives in quantitative yields with high enantioselectivity in a MeOH/H2O mixture using sequential alkyne hydration/asymmetric transfer hydrogenation reactions. A hybrid catalytic system was developed for sequential alkyne hydration/asymmetric transfer hydrogenation reactions through the confinement of an amphiphilic polymer supported ruthenium and gold catalysts within core/shell silica gel.Item Open Access A sustainable solution to skin diseases: ecofriendly transdermal patches(MDPI AG, 2023-02-08) Yılmaz, Eylül Gülşen; Ece, Emre; Erdem, Özgecan; Eş, İsmail; İnci, FatihSkin is the largest epithelial surface of the human body, with a surface area of 2 m2 for the average adult human. Being an external organ, it is susceptible to more than 3000 potential skin diseases, including injury, inflammation, microbial and viral infections, and skin cancer. Due to its nature, it offers a large accessible site for administrating several medications against these diseases. The dermal and transdermal delivery of such medications are often ensured by utilizing dermal/transdermal patches or microneedles made of biocompatible and biodegradable materials. These tools provide controlled delivery of drugs to the site of action in a rapid and therapeutically effective manner with enhanced diffusivity and minimal side effects. Regrettably, they are usually fabricated using synthetic materials with possible harmful environmental effects. Manufacturing such tools using green synthesis routes and raw materials is hence essential for both ecological and economic sustainability. In this review, natural materials including chitosan/chitin, alginate, keratin, gelatin, cellulose, hyaluronic acid, pectin, and collagen utilized in designing ecofriendly patches will be explored. Their implementation in wound healing, skin cancer, inflammations, and infections will be discussed, and the significance of these studies will be evaluated with future perspectives.Item Open Access Advances in biomimetic systems for molecular recognition and biosensing(MDPI Multidisciplinary Digital Publishing Institute, 2020-05) Saylan, Y.; Erdem, Özgecan; İnci, Fatih; Denizli, A.Understanding the fundamentals of natural design, structure, and function has pushed the limits of current knowledge and has enabled us to transfer knowledge from the bench to the market as a product. In particular, biomimicry—one of the crucial strategies in this respect—has allowed researchers to tackle major challenges in the disciplines of engineering, biology, physics, materials science, and medicine. It has an enormous impact on these fields with pivotal applications, which are not limited to the applications of biocompatible tooth implants, programmable drug delivery systems, biocompatible tissue scaffolds, organ-on-a-chip systems, wearable platforms, molecularly imprinted polymers (MIPs), and smart biosensors. Among them, MIPs provide a versatile strategy to imitate the procedure of molecular recognition precisely, creating structural fingerprint replicas of molecules for biorecognition studies. Owing to their affordability, easy-to-fabricate/use features, stability, specificity, and multiplexing capabilities, host-guest recognition systems have largely benefitted from the MIP strategy. This review article is structured with four major points: (i) determining the requirement of biomimetic systems and denoting multiple examples in this manner; (ii) introducing the molecular imprinting method and reviewing recent literature to elaborate the power and impact of MIPs on a variety of scientific and industrial fields; (iii) exemplifying the MIP-integrated systems, i.e., chromatographic systems, lab-on-a-chip systems, and sensor systems; and (iv) closing remarks.Item Open Access Advances in biosensor technologies for acute kidney injury(American Chemical Society, 2021-12-20) Derin, Esma; İnci, FatihAcute kidney injury (AKI) is one of the most prevalent and complex clinical syndromes with high morbidity and mortality. The traditional diagnosis parameters are insufficient regarding specificity and sensitivity, and therefore, novel biomarkers and their facile and rapid applications are being sought to improve the diagnostic procedures. The biosensors, which are employed on the basis of electrochemistry, plasmonics, molecular probes, and nanoparticles, are the prominent ways of developing point-of-care devices, along with the mutual integration of efficient surface chemistry strategies. In this manner, biosensing platforms hold pivotal significance in detecting and quantifying novel AKI biomarkers to improve diagnostic interventions, potentially accelerating clinical management to control the injury in a timely manner. In this review, novel diagnostic platforms and their manufacturing processes are presented comprehensively. Furthermore, strategies to boost their effectiveness are also indicated with several applications. To maximize these efforts, we also review various biosensing approaches with a number of biorecognition elements (e.g., antibodies, aptamers, and molecular imprinting molecules), as well as benchmark their features such as robustness, stability, and specificity of these platforms.Item Open Access Advances in plasmonic technologies for point of care applications(American Chemical Society, 2014) Tokel, Onur; İnci, Fatih; Demirci, UtkanInfectious diseases have considerable economic and societal impact on developing settings. For instance, malaria is observed more commonly in sub-Saharan Africa and India. The societal impact of acquired immune deficiency syndrome (AIDS) and tuberculosis is high, through targeting adults in villages and leaving behind declining populations. Highly sensitive and specific lab assays such as cell culture methods, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) are available for diagnosis of infectious diseases in the developed world. They require sample transportation, manual preparation steps, and skilled and well-trained technicians. These clinical conventional methods provide results in several hours to days, precluding rapid detection and response at the primary care settings. Another diagnostic challenge is identifying multiple pathogens.Item Open Access Advancing 3D printed microfluidics with computational methods for sweat analysis(SPRINGER Wien, 2024-02-27) Ece, Emre; Ölmez, Kadriye; Hacıosmanoğlu, Nedim; Atabay, Maryam; İnci, FatihThe intricate tapestry of biomarkers, including proteins, lipids, carbohydrates, vesicles, and nucleic acids within sweat, exhibits a profound correlation with the ones in the bloodstream. The facile extraction of samples from sweat glands has recently positioned sweat sampling at the forefront of non-invasive health monitoring and diagnostics. While extant platforms for sweat analysis exist, the imperative for portability, cost-effectiveness, ease of manufacture, and expeditious turnaround underscores the necessity for parameters that transcend conventional considerations. In this regard, 3D printed microfluidic devices emerge as promising systems, offering a harmonious fusion of attributes such as multifunctional integration, flexibility, biocompatibility, a controlled closed environment, and a minimal requisite analyte volume—features that leverage their prominence in the realm of sweat analysis. However, formidable challenges, including high throughput demands, chemical interactions intrinsic to the printing materials, size constraints, and durability concerns, beset the landscape of 3D printed microfluidic devices. Within this paradigm, we expound upon the foundational aspects of 3D printed microfluidic devices and proffer a distinctive perspective by delving into the computational study of printing materials utilizing density functional theory (DFT) and molecular dynamics (MD) methodologies. This multifaceted approach serves manifold purposes: (i) understanding the complexity of microfluidic systems, (ii) facilitating comprehensive analyses, (iii) saving both cost and time, (iv) improving design optimization, and (v) augmenting resolution. In a nutshell, the allure of 3D printing lies in its capacity for affordable and expeditious production, offering seamless integration of diverse components into microfluidic devices—a testament to their inherent utility in the domain of sweat analysis. The synergistic fusion of computational assessment methodologies with materials science not only optimizes analysis and production processes, but also expedites their widespread accessibility, ensuring continuous biomarker monitoring from sweat for end-users.Item Open Access Aptamer-based point-of-care devices: Emerging technologies and integration of computational methods(MDPI, 2023-05-22) Aslan, Yusuf; Atabay, Maryam; Chowdhury, Hussain Kawsar; Göktürk, Ilgım; Saylan, Y.; İnci, FatihRecent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited due to obstacles associated with cost and production, impeding its widespread adoption. One promising alternative, on the other hand, is aptamer integration, i.e., short sequences of single-stranded DNA and RNA structures. The advantageous properties of these molecules are as follows: small molecular size, amenability to chemical modification, low- or nonimmunogenic characteristics, and their reproducibility within a short generation time. The utilization of these aforementioned features is critical in developing sensitive and portable POC systems. Furthermore, the deficiencies related to past experimental efforts to improve biosensor schematics, including the design of biorecognition elements, can be tackled with the integration of computational tools. These complementary tools enable the prediction of the reliability and functionality of the molecular structure of aptamers. In this review, we have overviewed the usage of aptamers in the development of novel and portable POC devices, in addition to highlighting the insights that simulations and other computational methods can provide into the use of aptamer modeling for POC integration.Item Open Access Benchmarking a microfluidic-based filtration for isolating biological particles(American Chemical Society, 2022-01-18) İnci, FatihIsolating particles from complex fluids is a crucial approach in multiple fields including biomedicine. In particular, biological matrices contain a myriad of distinct particles with different sizes and structures. Extracellular vesicles (EVs), for instance, are nanosized particles carrying vital information from donor to recipient cells, and they have garnered significant impact on disease diagnostics, drug delivery, and theranostics applications. Among all the EV types, exosome particles are one of the smallest entities, sizing from 30 to 100 nm. Separating such small substances from a complex media such as tissue culture and serum is still one of the most challenging steps in this field. Membrane filtration is one of the convenient approaches for these operations; yet clogging, low-recovery, and high fouling are still major obstacles. In this study, we design a two-filter-integrated microfluidic device focusing on dead-end and cross-flow processes at the same time, thereby minimizing any interfering factors on the recovery. The design of this platform is also numerically assessed to understand pressure-drop and flow rate effects over the procedure. As a model, we isolate exosome particles from human embryonic kidney cells cultured in different conditions, which also mimic complex fluids such as serum. Moreover, by altering the flow direction, we refresh the membranes for minimizing clogging issues and benchmark the platform performance for multitime use. By comprehensively analyzing the design and operation parameters of this platform, we address the aforementioned existing barriers in the recovery, clogging, and fouling factors, thereby achieving the use of a microfluidic device multiple times for bio-nanoparticle isolation without any notable issues.Item Open Access Bio-inspired magnetic beads for isolation of sperm from heterogenous samples ın forensic applications(Elsevier BV, 2021-05) İnci, Fatih; Karaaslan, M. G.; Gupta, R.; Avadhani, A.; Öğüt, M. G.; Atila, E. E.; Duncan, G.; Klevan, L.; Demirci, U.Rapid and efficient processing of sexual assault evidence will accelerate forensic investigation and decrease casework backlogs. The standardized protocols currently used in forensic laboratories require the continued innovation to handle the increasing number and complexity of samples being submitted to forensic labs. Here, we present a new technique leveraging the integration of a bio-inspired oligosaccharide (i.e., Sialyl‐LewisX) with magnetic beads that provides a rapid, inexpensive, and easy-to-use strategy that can potentially be adapted with current differential extraction practice in forensics labs. This platform (i) selectively captures sperm; (ii) is sensitive within the forensic cut-off; (iii) provides a cost effective solution that can be automated with existing laboratory platforms; and (iv) handles small volumes of sample (∼200 μL). This strategy can rapidly isolate sperm within 25 minutes of total processing that will prepare the extracted sample for downstream forensic analysis and ultimately help accelerate forensic investigation and reduce casework backlogs.Item Open Access Carbon-based nanomaterials and sensing tools for wearable health monitoring devices(Wiley-VCH Verlag GmbH & Co. KGaA, 2021-10-05) Erdem, Özgecan; Derin, Esma; Shirejini, Saeedreza Zeibi; Sağdıç, Kutay; Yılmaz, Eylül Gülşen; Yıldız, Selvin; Akçeoğlu, Garbis Atam; İnci, FatihThe healthcare system has a drastic paradigm shift from centralized care to home-based and self-monitoring strategies; aiming to reach more individuals, minimize workload in hospitals, and reduce healthcare-associated expenses. Particularly, wearable technologies are garnering considerable interest by tracking physiological parameters through motion and activities, and monitoring biochemical markers from sweat, saliva, and tears. Through their integrations with sensors, microfluidics, and wireless communication systems, they allow physicians, family members, or individuals to monitor multiple parameters without any significant disruptions to daily routine. Integrating flexible and smart materials with wearable platforms have already enabled facile operations. Especially, carbon nanomaterials hold unique features, including low density, high strength, good conductivity, outstanding flexibility, versatile integration with materials and sensors. In this manuscript, carbon nanomaterials are comprehensively reviewed with their tremendous assets utilized in wearable technologies. Further, their integration with ultrasonic, acoustic and energy harvesting devices, optical and electrochemical platforms, microfluidics, and wireless communication technologies are presented.Item Open Access A confirmatory test for sperm in sexual assault samples using a microfluidic-integrated cell phone imaging system(Elsevier, 2020) Deshmukh, S.; İnci, Fatih; Karaaslan, M. G.; Öğüt, M. G.; Duncan, D.; Klevan, L.; Duncan, G.; Demirci, U.Rapid and efficient processing of sexual assault evidence to accelerate forensic investigation and decrease casework backlogs is urgently needed. Therefore, the standardized protocols currently used in forensic laboratories can benefit from continued innovation to handle the increasing number and complexity of samples being submitted to forensic labs. To our knowledge, there is currently no available rapid and portable forensic screening technology based on a confirmatory test for sperm identification in a sexual assault kit. Here, we present a novel forensic sample screening tool, i.e., a microchip integrated with a portable cell phone imaging platform that records and processes images for further investigation and storage. The platform (i) precisely and rapidly screens swab samples (<15 min after sample preparation on-chip); (ii) selectively captures sperm from mock sexual assault samples using a novel and previously published SLeX-based surface chemistry treatment (iii) separates non-sperm contents (epithelial cells and debris in this case) out of the channel by flow prior to imaging; (iv) captures cell phone images on a portable cellphone-integrated imaging platform, (v) quantitatively differentiates sperm cells from epithelial cells, using a morphology detection code that leverages Laplacian of Gaussian and Hough gradient transform methods; (vi) is sensitive within a forensic cut-off (>95% accuracy) compared to the manual counts; (vii) provides a cost-effective and timely solution to a problem which in the past has taken a great deal of time; and (viii) handles small volumes of sample (20 μL). This integration of the cellphone imaging platform and cell recognition algorithms with disposable microchips can be a new direction toward a direct visual test to screen and differentiate sperm from epithelial cell types in forensic samples for a crime laboratory scenario. With further development, this integrated platform could assist a sexual assault nurse examiner (SANE) in a hospital or sexual assault treatment center facility to flag sperm-containing samples prior to further downstream testing.Item Open Access Dual-stoichiometry copper sulphide nanoparticles by laser ablation in DMSO: synthesis and biomedical applications for enhanced photothermal therapy and photoacoustic imaging(Wiley-VCH Verlag GmbH & Co. KGaA, 2024-05-13) Taylan, Umut; Akçimen, Samet; Eş, İsmail; Küçük, Beyza Nur; Tekgül, Esra Kendir; Çelebi, Çağatay; Kumru, Yasin; Köymen, Hayrettin; İnci, Fatih; Ortaç, BülendCopper sulphide nanoparticles are synthesized by laser ablation of a copper target in DMSO by a 527 nm nanosecond pulsed laser. These nanoparticles have double stoichiometry (CuS and $Cu_{1.8}S$) and crystalline structures, sizes under 30 nm, and they present substantial absorbance in the second near-infrared window and photoluminescence in the visible region. The nanoparticles are used as photothermal and photoacoustic agents at 1080 nm and 1064 nm, respectively. Utilizing as a photothermal agent, these nanoparticles rapidly exhibit local heating, photothermal stability, and a temperature change of 52.2 °C within 300 s at $1 mg mL^{−1}$ concentration and $3.23 W cm^{−2}$ laser intensity. On the other hand, while employed as a photoacoustic agent, they enhanced the contrast significantly and increased the brightness proportional to their concentrations when compared to ultrasound imaging. Additionally, the biocompatibility properties of these nanoparticles were tested with cancer cells, and they were subjected to laser ablation to assess their photothermal effects. In this article, we demonstrate that copper sulphide nanoparticles synthesized by pulsed laser ablation hold great promise for photothermal and photoacoustic applications, especially in biomedical applications.Item Open Access Encapsulation of the Hoveyda–Grubbs 2nd generation catalyst in magnetically separable alginate/mesoporous carbon beads for olefin metathesis reactions in water(Royal Society of Chemistry, 2022-04-08) Tunalı, Z.; Sağdıç, Kutay; İnci, Fatih; Öztürk, B.Ö.In this study, nano-sized mesoporous carbon-supported HG2 and magnetic γ-Fe2O3 nanoparticles were encapsulated within calcium alginate gels using a one-pot procedure. Mesoporous carbon within the hydrophilic alginate shell provided hydrophobic compartments for hydrophobic olefinic substrates to conduct olefin metathesis reactions in water under an air atmosphere. Stable alginate/mesoporous carbon gel structures were obtained in the presence of a non-ionic surfactant (Tween20) with a homogenous distribution of HG2 in the gel matrix as confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The HG2 catalyst encapsulated in the alginate/mesoporous carbon matrix exhibited an improved performance in water, and quantitative yields were obtained in ring-closing metathesis reactions of diethyl diallylmalonate even in tap-water under the air atmosphere with no significant ruthenium and iron leaching. The catalyst can be easily separated from the reaction mixture with the aid of a magnet, and it can be reused up to 7 times in RCM reactions.Item Open Access Hydrogel integrated optical fiber sensors and their applications a comprehensive review(Royal Society of Chemistry, 2023-07-13) Sadeque, Sazid Bin; Chowdhury, Hussain Kawsar; Rafique, Muzaffar; Durmuş, Mehmet Atıf; Ahmed, Kawsar; Hasan, Mehdi; Erbaş, Aykut; Sarpkaya, İbrahim; İnci, Fatih; Ordu, MustafaHydrogel-integrated optical fiber sensors have garnered momentous interest due to their optical properties, biocompatibility, and biodegradability. Integrating active materials with hydrogels facilitates hydrogels to be employed as a smart material that responds to external stimuli in biological or chemical media, allowing them to be a potential candidate for sensing applications. Although substantial research efforts have been made on integrating hydrogels with optical fibers, this field has never been reviewed extensively. In this paper, hydrogel-integrated optical fiber sensors are reviewed comprehensively, including the fundamentals of hydrogels, the synthesis process, and the working principle of various sensing methods. The light-guiding and sensing mechanism adopted by hydrogel-integrated optical fibers is discussed. The current progress in their fabrication procedures is categorized and explained. Finally, we have briefly evaluated the applications of hydrogel-integrated optical fiber sensors in various fields spanning from biosensing to environmental sensing.Item Open Access In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system(Nature Research, 2023-08-10) Erdem, Özgecan; Eş, Ismail; Saylan, Y.; Atabay, Maryam; Güngen, Murat Alp; Ölmez, Kadriye; Denizli, A.; İnci, FatihCurrent practices in synthesizing molecularly imprinted polymers face challenges—lengthy process, low-productivity, the need for expensive and sophisticated equipment, and they cannot be controlled in situ synthesis. Herein, we present a micro-reactor for in situ and continuously synthesizing trillions of molecularly imprinted polymeric nanoparticles that contain molecular fingerprints of bovine serum albumin in a short period of time (5-30 min). Initially, we performed COMSOL simulation to analyze mixing efficiency with altering flow rates, and experimentally validated the platform for synthesizing nanoparticles with sizes ranging from 52-106 nm. Molecular interactions between monomers and protein were also examined by molecular docking and dynamics simulations. Afterwards, we benchmarked the micro-reactor parameters through dispersity and concentration of molecularly imprinted polymers using principal component analysis. Sensing assets of molecularly imprinted polymers were examined on a metamaterial sensor, resulting in 81% of precision with high selectivity (4.5 times), and three cycles of consecutive use. Overall, our micro-reactor stood out for its high productivity (48-288 times improvement in assay-time and 2 times improvement in reagent volume), enabling to produce 1.4-1.5 times more MIPs at one-single step, and continuous production compared to conventional strategy. © 2023, Springer Nature Limited.Item Open Access Microfluidic-based plasmonic nanosensors for biological and chemical threats(CRC Press, LLC, 2024-01-01) Erdem, Özgecan; Yılmaz, Eylül Gülşen; Küçük, Beyza Nur; İnci, Fatih; Saylan, YeşerenIn the ever-evolving landscape of biological and chemical threat detection, the integration of microfluidics and plasmonic nanosensors has emerged as a revolutionary approach. This chapter explores the cutting-edge field of microfluidic-based plasmonic nanosensors as a powerful system for fast and sensitive detection of biological and chemical threats. The chapter begins with the fundamentals of microfluidics by highlighting their individual advantages. Case studies from recent research highlight the versatility of microfluidic-based plasmonic nanosensors in detecting a wide range of biological and chemical threats, including pathogens, toxins, explosives, and environmental contaminants. In conclusion, microfluidic-based plasmonic nanosensors represent a groundbreaking technology at the intersection of microfluidics and plasmonics, offering innovative solutions for the detection of biological and chemical threats. So, this chapter provides a comprehensive overview of microfluidic-based plasmonic nanosensors, their underlying principles, recent advancements, and future directions, making it an essential resource for researchers, scientists, and policymakers involved in threat detection and sensor development. © 2024 selection and editorial matter, Adil Denizli; individual chapters, the contributors.Item Open Access Microfluidics as a ray of hope for microplastic pollution(MDPI, 2023-02-28) Ece, Emre; Hacıosmanoğlu, Nedim; İnci, FatihMicroplastic (MP) pollution is rising at an alarming rate, imposing overwhelming problems for the ecosystem. The impact of MPs on life and environmental cycles has already reached a point of no return; yet global awareness of this issue and regulations regarding MP exposure could change this situation in favor of human health. Detection and separation methods for different MPs need to be deployed to achieve the goal of reversing the effect of MPs. Microfluidics is a well-established technology that enables to manipulate samples in microliter volumes in an unprecedented manner. Owing to its low cost, ease of operation, and high efficiency, microfluidics holds immense potential to tackle unmet challenges in MP. In this review, conventional MP detection and separation technologies are comprehensively reviewed, along with state-of-the-art examples of microfluidic platforms. In addition, we herein denote an insight into future directions for microfluidics and how this technology would provide a more efficient solution to potentially eradicate MP pollution.Item Embargo Micrometasense: coupling plasmonic metasurfaces with fluorescence for enhanced detection of microplastics in real samples(American Chemical Society, 2024-12-27) Ece, Emre; Aslan, Yusuf; Hacıosmanoglu, Nedim; İnci, FatihDiverse analytical techniques are employed to scrutinize microplastics (MPs)-pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 mu m; nanoplastics: < 1 mu m). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants. In this study, we introduce a holistic strategy, i.e., MicroMetaSense, reliant on a metal-enhanced fluorescence (MEF) phenomenon in detecting a myriad size and types of MPs (i.e., poly(methyl methacrylate) (PMMA) and poly(ethylene terephthalate) (PET)) down to 183-205 fg, as well as validated the system with real samples (tap and lake) and artificial ocean samples as a real-world scenario. To obtain precise size distribution in nanometer scale, MPs are initially processed with an ultrafiltration on-a-chip method, and subsequently, the MPs stained with Nile Red dye are subjected to meticulous analysis under a fluorescence microscope, utilizing both a conventional method (glass substrate) and the MicroMetaSense platform. Our approach employs a metasurface to augment fluorescence signals, leveraging the MEF phenomenon, and it demonstrates an enhancement rate of 36.56-fold in detecting MPs compared to the standardized protocols. This low-cost ($2), time-saving (under 30 min), and highly sensitive (183-205 femtogram) strategy presents a promising method for precise size distribution and notable improvements in detection efficacy not only for laboratory samples but also in real environmental samples; hence, signifying a pivotal advancement in conventional methodologies in MP detection.