Scholarly Publications - Mechanical Engineering
Permanent URI for this collectionhttps://hdl.handle.net/11693/115626
Browse
Browsing Scholarly Publications - Mechanical Engineering by Author "Abazari, Amirali"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A study on the effect of structural compliance placing in soft contact/collision properties of multirotor micro aerial vehicles(Wiley-VCH Verlag GmbH & Co. KGaA, 2024-10-14) Abazari, Amirali; Bakır, Alihan; Sertpoyraz, Altar; Özcan, OnurAdding compliance (softness) has been introduced as an effective way to improve the physical collision resilience characteristics of multirotor micro aerial vehicles(MAVs). This article answers the question “Where is the best place to apply compliance in a multirotor MAV to make it more collision-resilient?” by analyzing the output data of more than 1200 drone collision tests through two sets of accelerated and nonaccelerated collision experiments for four main configurations of micro-quadcopters each possessing a unique softness layout of physical frame. It is shown that while applying compliance to the protective propeller guards (bumpers) of a micro-quadcopter provides a more elastic collision, it does not improve its energy-dissipation (impact damping) characteristics. On the other hand, enhancing the inner frame of the micro-quadcopter with a softer structure results in higher rates of impact energy damping during the collision sand an increase in the impact time, which results in lower impact accelerations the MAV experiences during the crush. A mathematical model is developed representing the contact/collision interactions as nonlinear viscoelastic forces. Comparing the results of the simulations to the experiments suggests that this model can effectively mimic the impact behavior of contacting/colliding MAVs with different structural stiffness and damping.Item Open Access SCoReR: sensorized collision resilient aerial robot(IEEE - Institute of Electrical and Electronics Engineers, 2023-05-15) Bakır, Alihan; Özbek, Doğa; Abazari, Amirali; Özcan, OnurDetection and control of the physical contact/impact between micro aerial vehicles and the surrounding obstacles have become a significant issue with the rapid growth of their use in inspection and mapping missions in confined, obstacle-cluttered environments. In this work, we introduce a collision-resilient compliant micro quadcopter equipped with soft coil-spring type force sensors to passively resist and detect the physical contact/impact of the drone. The sensors act as resistive elements with a nominal resistance of 130–150 kΩ. They are manufactured from a conductive material via FDM 3D printing. We install these sensors on the protective bumpers of the collision-resilient foldable body of the drone. Any contact/impact between the bumpers and an obstacle results in deformation and buckling of the soft sensors, which results in a drastic change in their resistance, making it possible to detect the contacts/impacts of the bumpers. With a total weight of 220g and dimensions of 22cmx22cmx9cm, SCoReR successfully detects and recovers 100% of the contacts/impacts when it approaches a rigid wall with a velocity in the range of [0.1-1] m/s.