Surface elasticity and area incompressibility regulate fiber beading instability
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A continuum body endowed with an energetic surface can exhibit different mechanical behavior than its bulk counterpart. Soft polymeric cylinders under surface effects become unstable and form surface undulations referred to as the elastic Plateau–Rayleigh (PR) instability, exclusively driven by competing surface and bulk properties. However, the impact of surface elasticity and area compressibility, along with bulk compressibility, on the PR instability of soft solids remains unexplored. Here we develop a theoretical, finite deformations framework to capture the onset of the PR instability in highly deformable solids with surface tension, surface elasticity, and surface compressibility, while retaining the compressibility of the bulk as a material parameter. In addition to the well-known elastocapillary number, surface compressibility and a dimensionless parameter related to the surface modulus are found to govern the instability behavior. The results of the theoretical framework are analyzed for an exhaustive list of bulk and surface parameters and loading scenarios, and it is found that increasing surface elasticity and surface incompressibility preclude PR instability. Theoretical results are compared with high-fidelity numerical simulation results from surface-enhanced isogeometric finite element analysis and an excellent agreement is observed across a broad range of material parameters and large deformation levels. Our results demonstrate how surface effects can be used to (i) render stable soft structures and prevent PR instability when it occurs as an unwanted by-product of manufacturing techniques or (ii) tune the instability behavior for possible applications involving polymer fibers.