Phase transformation and structural development in mechano-synthesized calcium-copper-titanate electroceramics

Limited Access
This item is unavailable until:
2026-11-27

Date

2024-11-27

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
8
views
1
downloads

Citation Stats

Series

Abstract

This research focuses on the mechano-synthesis of synthesizing calcium-copper-titanate (CCTO) powder through mechanical alloying of the respective oxides aiming to optimize the production of nanoscale electroceramics with high dielectric properties. Structural characterization was carried out using X-ray diffraction with Rietveld refinement (phase identification and quantification), while transmission electron microscopy was employed to observe particle size changes including the reduction of particle size to nanometric scales (10–35 nm). The mechano-synthesis process involving CaO, CuO, and TiO2 resulted in the creation of perovskite CCTO, with minimal contamination observed from the milling process. Significant particle size reduction, nanostructure formation, and a high level of amorphization, alongside polymorphic transitions in TiO2 during milling that played a critical role in achieving full amorphization, which was essential for the formation of high-purity CCTO. The study demonstrates that after 256 h of milling, 88 wt% of the powder consisted of crystalline CCTO, highlighting the potential for enhanced performance in dielectric and microelectronic applications. There was no detection of either stoichiometric CCTO or any non-stoichiometric phases prior to the complete amorphization of the powders. Therefore, results revealing significant advancements in particle size reduction, nanostructure formation, and amorphization, which influence enhanced material performance. Nucleating and growing the CCTO phase directly from an amorphous state without the formation of intermediate crystalline phases clears the potential for optimizing CCTO production processes.

Source Title

Ceramics International

Publisher

Elsevier Ltd

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English